将矩阵化为阶梯型矩阵可以同时用行列变换吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:04:59
将矩阵化为阶梯型矩阵可以同时用行列变换吗
将矩阵化为阶梯型

(1)A=112-1211-12212r3-r2,r2-2r1112-10-1-310103r3+r2112-10-1-310032(2)A=115-111-233-18113-97r2-r1,r3-

将此矩阵化为标准阶梯形矩阵

5+r4,r2+2r1,r3-3r1,r4+4r1101001570-1-3301110-2-2-2r2-r4,r3+r4,r5+2r41010004600-2401110000r3*(-1/2),r

求矩阵的秩需要把矩阵化为阶梯型,阶梯型是什么样的?

请看图片再问:那求矩阵的秩怎么知道化到哪一步就完成了呢?再答:化成梯矩阵,非零行数就是秩

将下列矩阵化为行最简阶梯型:

3-r1-r2,r2-2r1102-100-1300-1-3r3-r2102-100-13000-6r3*(-1/6),r1+r3,r2-3r3102000-100001r1+2r2,r2*(-1)1

关于阶梯型矩阵的问题把一个普通矩阵化为阶梯型矩阵可不可以同时使用行变换与列变换我们的书上没有介绍行阶梯型和列阶梯型,晕死

这要看你要求什么.行阶梯形矩阵是用来求方程组的解的(当然还有很多其他用途)所以一般不用列变换若是只求矩阵的秩,可以行,列变换同时使用

是不是将矩阵化为行阶梯型矩阵,就可以通过非零行的行数判断秩了?需要化成行最简型嘛?

将矩阵化为行阶梯型,其非零行数即矩阵的秩,不必化成行最简型.行最简型一般用来求线性方程组的解或将一个向量表示为其他向量的线性组合

求大神把下列矩阵化为阶梯型矩阵,-||

1+r214-135432306-1-50-725141r2-4r1,r3-6r1,r4-2r114-1350-136-9-200-251-18-370-33-2-9r3-2r214-1350-136

如何将下列矩阵化为阶梯矩阵

b=[135-40;132-21;1-21-1-1;1-411-1];>>rref(b)ans=1.00000000.500001.0000000.5000001.0000000001.00000.5

求教:用矩阵的初等行变换将下面的矩阵化为行阶梯形

你是对的梯矩阵不是唯一的行最简形唯一确定那个答案是错的再问:哦哦谢谢老师~

怎样简便有效地将矩阵化为约化阶梯型矩阵

先找出第一列数的规律,例如(开始化简时应该先观察其中行与行之间有无成倍数关系的若有可直接使其中一行为0)2356414512343679这个矩阵可以用第2行减去第4行(4-3后能得到1这样有利于后续化

用初等变换将下列矩阵化为约化阶梯形

因为名称不一,约化阶梯形我理解为行阶梯矩阵1.r3+r117280-536005152.解:r1-r4,r2-2r4,r4-4r40-17-60-17-60-214-1210-45r2-r1,r3-2

将矩阵化为阶梯型将这三题的矩阵化为阶梯型矩阵,

(1)A=112-1211-12212r3-r2,r2-2r1112-10-1-310103r3+r2112-10-1-310032(2)A=115-111-233-18113-97r2-r1,r3-

用初等行变换把下列矩阵化为阶梯型矩阵,并求出它们的秩

用初等行变换来转化2-307-510320218373-2580第3行减去第1行,第1行减去第2行×2,第4行减去第2行×30-3-63-510320048-450-2-420第1行减去第4行×1.5

什么是列阶梯形矩阵和列最简形矩阵?通过矩阵的初等列变换将矩阵化为列阶梯形矩阵的具体步骤?感激不尽~

列阶梯形矩阵和列最简形矩阵,通过矩阵的初等列变换将矩阵化为列阶梯形矩阵不知道你为什么想到这个,这个几乎不用如果非这样处理,可以把矩阵转置行阶梯形矩阵和行最简形矩阵你应该知道通过矩阵的初等行变换将矩阵化

将下列矩阵化为行最简阶梯形矩阵

1-3r2,r3-r2,r4+2r2-70-726312-710-513708-21r1+r4,r4-7r30015312-710-5130043-112r4-43r10015312-710-5130

用初等行变换,将矩阵化为阶梯形及行最简形,并求出矩形的秩

1-130-21-21-1-152r2+2r1,r3+r11-1300-1410-282r3-2r21-1300-1410000这是梯矩阵,r(A)=2.r2*(-1),r1+r210-1-101-4

线性代数 矩阵化为标准型阶梯矩阵

1-12102-2420306-1130631r4-r3,r2-2r1,r3-3r11-121000000030-4100040r2+r3,r4*(1/4),r1-r41-12000000003001