将由y=sinx和x轴所围成的图绕y轴

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:47:40
将由y=sinx和x轴所围成的图绕y轴
设由曲线y=1-x^2,y=ax^2(a>0)所围成的平面图形绕y轴旋转所得旋转体的体积等于由曲线y=1-x^2和x轴所

由已知得:y=1-x^2与y=ax^2的交点d的横坐标为:x1=1/根号(a+1),x2=-1/根号(a+1)由曲线y=1-x^2,y=ax^2(a>0)所围成的平面图形绕y轴旋转所得旋转体的体积为:

求曲线y=sinx,y=cosx和直线x=0,x=派/2所围成的平面图形的面积

y=sinx,y=cosx交点是(π/4,√2/2)得到S=∫(cosx-sinx)dx(0到π/4)+∫(sinx-cosx)dx(π/4到π/2)=√2-1+√2-1=2√2-2再问:再问:第10

由两曲线Y=SINX(X∈[0,2π])和Y=COSX(X∈[0,2π])所围成的封闭图形的面积

我想你是对的.画图可知,封闭图形的面积为积分区间[Pai/4,5Pai/4]sinx-cosx的一个原函数为-cosx-sinx所以S=(-cos5pai/4-sin5pai/4)+(cospai/4

求由曲线y=sinx,y=cosx,x=0,x=pai/2所围成图形绕x轴旋转一周而成的旋转体的体积.

V=π∫(π/4→π/2)[(sinx)^2-(cosx)^2]dx=π∫(π/4→π/2)(-cos2x)dx=π[-(sin2x)/2](π/4→π/2)=π/2再问:是不是少乘了个2?再答:是少

求由Y=sinx(0≤x≤π)与X轴所围成图形绕X轴旋转一周而成的立体的体积.

上限:π下限:0V=∫(πsin²x)dx=0.5∫π(1-cos²x)dx=0.5π²

曲线y=sinx和x轴在区间[0,派/2]上所围成的平面图形的面积

在[0,π/2]上对y=sinx即使其与x轴围成的面积.面积A=【0→π/2】∫sinxdx=(-cosx)|【0→π/2】=-cos(π/2)+cos0=0+1=1

求由曲线y=cosx y=sinx 和直线 x=0 x=2所围图形的面积

如图,第一个图是你要求的面积,把它可以转化成第二个图,两个面积是相同的,这样好求一点.这样,则面积是两块对称的图形,不妨算一下左边的面积,S=∫(sinx-cosx)dx (π/4≤x≤5π

1.求过由曲线y=sinX,y=cosX及直线x=0,x=π/2所围成的图形的面积

1.在区间[0,π/2]上,函数sinx与cosx交于(π/4,根号2/2),而在[0,π/4)上cosx>sinx;在[π/4,π/2]上,sinx>cosx,所以所求面积为S=∫(0->π/2)|

曲线y=sinx与x轴所围成的封闭区域的面积为

什么范围啊?如果是x属于R则因为sinx是奇函数,关于原点对称所以面积是0

求由y=sinx,y=cosx所围成图形绕x轴旋转一周所得旋转体体积.

首先必须指出:他们若不加限制,则答案为“无限大”.题目应该写明【四分之一周期】的图像旋转生成的立体图形的体积.就是图中任一个色块构成的旋转体体积.有常用的体积公式.我写了思路,你自己是否可以解决啦?&

求由Y=X^2,Y=X所围成的平面图形的面积和绕X轴旋转所得旋转体的体积

解先作图(此处略),得知该图形在x轴上的投影是区间[0,1].(1)图形在x∈[0,1]处的面积微元dA(x)=(x-x^2)dx,故所求面积为A=∫[0,1]dA(x)=∫[0,1](x-x^2)d

曲线y=sinx,直线x=-π,x=π和X轴所围的面积S=

S=ʃ(-π,π)|sinx|dx=2ʃ(0,π)sinxdx=4答案选A注意C的结果是0

微积分二重积分问题3计算∫∫ (sinx/x)dxdy ,其中D是由直线y=x ,y=x^2所围成的区域

令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限

求由曲线y=sinx与x轴所围成图形绕y轴旋转所得体积,0=<x

绕y轴旋转所得体积=∫2π*x*sinxdx=2π∫x*sinxdx=2π[(-x*cosx)│+∫cosxdx](应用分部积分法)=2π[π+(sinx)│]=2π(π+0)=2π²

求由函数y=sinx,y=cosx,x轴上的线段【0,π/2】所围图形绕X轴旋转所成的旋转体体积?求详细解答过程

求由函数y=sinx,y=cosx,x轴上的线段【0,π/2】所围图形绕X轴旋转所成的旋转体体积?V=[0,π/4)π∫sin²xdx+[π/4,π/2]π∫cos²xdx=[0,