将函数f(x)=1(2 x)展开成(x-1)的幂级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:25:52
将函数f(x)=1(2 x)展开成(x-1)的幂级数
将函数展开为幂级数将函数f(x)=1/(x²+x-2)展开成X的幂级数

f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2

将函数f(x)=1/(x^2+3x+2)展开成x的幂级数

f(x)=1/(x^2+3x+2)=1/(x+1)-1/(x+2)=1/(x+1)-(1/2)/(1+x/2)=∑(n=0,+∞)(-x)^n-(1/2)∑(n=0,+∞)(-x/2)^n|x|

将函数 f(x)=1/(x+2) 展开成 x-3 的幂级数

f(x)=1/(x+2)=1/[5+(x-3)]=(1/5){1/[1+(x-3)/5]}=(1/5)∑(n=0~∞)[-(x-3)/5]^n

将函数f(x)=1/(2+x)展开成(x-3)的幂级数

1/(2+x)=1/(2+3+x-3)=1/5(1+(x-3)/5)=(1/5)*∑(-1)^n((x-3)/5)^n=(1/5)*∑(-1)^n(x-3)^n/5^nn从0到∞

将函数f(x)=1/(1-x^2)展开为的x幂级数

1/(1-x^2)=1+x^2+x^4+...+x^2n+....(|x|

将函数f(x)=1/(x+1)展开成(x-2)的幂级数

1/(x+1)=1/(3+x-2)=(1/3)/[1+(x-2)/3)]=(1/3)∑(0,+∞)(-1)^n[(x-2)/3)]^n|x-2|

将函数f(x)=1/(2+3x)展开为x-1的幂级数

有f(x)=1/(2+3x)=1/5·1/{1-[-3(x-1)/5]}又因为1/(1-x)=1+x+x^2+x^3+···+x^n+···(-1

将函数f(x)=x/(x^2-2x-3)展开成x的幂级数

就是先化成部分分式:令f(x)=x/[(x-3)(x+1)]=a/(x-3)+b/(x+1)去分母得:x=a(x+1)+b(x-3)即x=(a+b)x+a-3b对比系数得:a+b=1,a-3b=0两式

求将函数f(x)=1/(2-3x+x)展开成x的幂级数?

f(x)=1/(x-2)(x-1)=1/(x-2)-1/(x-1)=1/2(1-x/2)+1/(1-x)=1/2∑(x/2)n+∑xn∑上面是无穷大,下面是n=0X范围为(-1,1)

将函数f(x)=1/1+2x展开为x-1的幂级数

令t=x-1则x=t+1f(x)=1/(1+2x)=1/(1+2t+2)=1/(2t+3)=1/3*1/(1+2t/3)=1/3*[1-2t/3+4t^2/9-8t^3/27+.]=1/3-2t/9+

将函数f(x)=1/x^2展开成(x+1)的幂级数

就讲一下思路了.(1)首先把f(X)=1/x^2看成是g(x)=-1/x的导数,也就是f(x)=g'(x).(2)将g(x)展开成x+1的幂级数.g(x)=-1/x=1/(1-(x+1))这样就可以把

将函数f(X)=1/X^2展开成(X+2)的幂级数

就讲一下思路了,百度不好打公式,完整的解答不太好写.(1)首先把f(X)=1/x^2看成是g(x)=-1/x的导数,也就是f(x)=g'(x).(2)将g(x)展开成x+2的幂级数.g(x)=-1/x

将函数f(x)=1/1+2x展开成关于x的幂级数

为什么没有人回答呢,太简单了吗?根据等比数列公式,1/(1+2x)=1/(1-(-2x))=1+(-2x)+(-2x)^2+(-2x)^3+...+(-2x)^(n-1)+...,这是因为等比数列前n

将函数f(x)=1/(2-x)^2展开成x的幂级数

f'(x)=(arccosx)'=-(1-x^2)^(-1/2)因为(1-x)^(-1/2)=1+1/2x+1*3/2*4x^2+)展开式成立的区间[-1,1]

将函数f(x)=x/x∧2-x-2展开成x-1的幂函数

令f(x)=x/(x²-x-2)=x/(x-2)(x+1)=a/(x-2)+b/(x+1)去分母:x=a(x+1)+b(x-2)即x=(a+b)x+a-2b对比系数:1=a+b,0=a-2b

将函数f(x)=2+|x|在[-1,1]上展开傅里叶级数.

为方便计,将函数拓广为:f(x)=2+|x|,x属于[-pi,pi].将此f拓广为R上的周期为2pi的周期函数.此函数连续,所以其傅立叶级数收敛于f(x):傅里叶级数f(x)=a0/2+a1cosx+

将函数f(x)=√(2x+5),展开x=1的幂级数

是根号7吧,还有前面的是(x+1)?看着好像不对啊在x=1处展开应该是(x-1)^n,展开函数f(x)成幂级数的形式的话是∑[f^(n)(x0)](x-x0)^n/n!的形式,对于这一题x0=1,f(

将函数f(x)=(x-1)/(x^2-2x-3)在X=1处展开为幂级数

将f(x)分f(x)=2[1/(x-3)+1/(x+1)]=2[-1/3*1/(1-x/3)+1/(1-(-x))]=-2/3求和(-x/3)^n+2求和(-x)^n

将函数f(x)=1/(x+2)展开成x-1的幂级数.

经济数学团队帮你解答,有不清楚请追问.满意的话,请及时评价.谢谢!

将函数f(X)=ln(1+x+x^2+x^3)展开成x的幂级数

原式=ln(1+x)+ln(1+x^2)=sigma[(-1)^n*x^n/n!]+sigma[(-1)^n*(x^2)^n/n!]=sigma{(-1)^n*[x^n+x^(2n)]/n!}其中,s