将下列函数展开成x的幂级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 01:12:48
这句话我写在前面:通过两题,我们需要得到的是,求幂级数表示,可以转换成求其导数或者积分的幂级数,再求秋分或导数;即幂级数的导数还是幂级数,幂级数的积分还是幂级数!而且幂级数的求积分求导,这个也是我们所
f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2
f(x)=1/(x^2+3x+2)=1/(x+1)-1/(x+2)=1/(x+1)-(1/2)/(1+x/2)=∑(n=0,+∞)(-x)^n-(1/2)∑(n=0,+∞)(-x/2)^n|x|
f(x)=1/(x+2)=1/[5+(x-3)]=(1/5){1/[1+(x-3)/5]}=(1/5)∑(n=0~∞)[-(x-3)/5]^n
再问:这一步是怎么得到的?再答:第一行就是微积分基本定理,第二行是利用sinx的泰勒展开式
f(x)=-1/3*1/(1-x/3)=-1/3*[1+x/3+x^2/9+x^3/27+x^4/81+.]=-1/3-x/9-x^2/27-x^3/81-...收敛域为|x|
f(x)=(cosx)^2=(cos2x+1)/2=cos2x/2+1/2=(i从0到正无穷){(-1)^i【(2x)^(2i)】/(2i)!}/2+1/2=(i从0到正无穷)(-1)^i*2^(2i
就是先化成部分分式:令f(x)=x/[(x-3)(x+1)]=a/(x-3)+b/(x+1)去分母得:x=a(x+1)+b(x-3)即x=(a+b)x+a-3b对比系数得:a+b=1,a-3b=0两式
f(x)=1/(x-2)(x-1)=1/(x-2)-1/(x-1)=1/2(1-x/2)+1/(1-x)=1/2∑(x/2)n+∑xn∑上面是无穷大,下面是n=0X范围为(-1,1)
X-x^3/3!+x^5/5!-……再问:幂级数的展开式好难,我连最基本的e^x,sinx都展不来,有什么技巧吗?
再问:ζ(2)是什么?再答:黎曼ζ函数,这个你不用知道的,只需知道是收敛的即可
/>
(arctanx)'=1/(1+x^2)=∑(-1)^n*x^(2n),-1<x<1.arctanx=∑(-1)^n*x^(2n+1)/(2n+1),-1≤x≤1.xarctanx=∑(-1)^n*x
套用已知的展开公式.经济数学团队帮你解答.请及时评价.
将f(x)的导函数展开,再逐项积分即可到其展开式再问:那2sinxcosx怎么展开呢?再答:那不就是sin2x吗?
f(x)=(1-x)/(1-x)(1+x+x^2)(1-x)*[x^3+x^6+...+x^3n+...)]
根据六大常用幂级数的展开式:f(x)=e^x=x+x^2/2!+x^3/3!+...+x^n/n!
解题过程请看附图.