将下列函数展开成X的幂函数 sinx 2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 10:10:06
将下列函数展开成X的幂函数 sinx 2
将下列两个函数展开成x的幂级数,并指出收敛区间.如图所示

这句话我写在前面:通过两题,我们需要得到的是,求幂级数表示,可以转换成求其导数或者积分的幂级数,再求秋分或导数;即幂级数的导数还是幂级数,幂级数的积分还是幂级数!而且幂级数的求积分求导,这个也是我们所

将函数展开为幂级数将函数f(x)=1/(x²+x-2)展开成X的幂级数

f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2

将函数f(x)=1/(x^2+3x+2)展开成x的幂级数

f(x)=1/(x^2+3x+2)=1/(x+1)-1/(x+2)=1/(x+1)-(1/2)/(1+x/2)=∑(n=0,+∞)(-x)^n-(1/2)∑(n=0,+∞)(-x/2)^n|x|

将函数 f(x)=1/(x+2) 展开成 x-3 的幂级数

f(x)=1/(x+2)=1/[5+(x-3)]=(1/5){1/[1+(x-3)/5]}=(1/5)∑(n=0~∞)[-(x-3)/5]^n

将下列函数f(x)展开成x的幂级数并求f(0)的n次幂.

再问:这一步是怎么得到的?再答:第一行就是微积分基本定理,第二行是利用sinx的泰勒展开式

将函数f(x)=x/(x^2-2x-3)展开成x的幂级数

就是先化成部分分式:令f(x)=x/[(x-3)(x+1)]=a/(x-3)+b/(x+1)去分母得:x=a(x+1)+b(x-3)即x=(a+b)x+a-3b对比系数得:a+b=1,a-3b=0两式

求将函数f(x)=1/(2-3x+x)展开成x的幂级数?

f(x)=1/(x-2)(x-1)=1/(x-2)-1/(x-1)=1/2(1-x/2)+1/(1-x)=1/2∑(x/2)n+∑xn∑上面是无穷大,下面是n=0X范围为(-1,1)

将函数sinx展开成x的幂级数,

X-x^3/3!+x^5/5!-……再问:幂级数的展开式好难,我连最基本的e^x,sinx都展不来,有什么技巧吗?

将函数展开成幂级数

再问:ζ(2)是什么?再答:黎曼ζ函数,这个你不用知道的,只需知道是收敛的即可

将下列函数展开成x的幂级数

(arctanx)'=1/(1+x^2)=∑(-1)^n*x^(2n),-1<x<1.arctanx=∑(-1)^n*x^(2n+1)/(2n+1),-1≤x≤1.xarctanx=∑(-1)^n*x

将以下函数展开成x的幂级数

套用已知的展开公式.经济数学团队帮你解答.请及时评价.

将函数如图展开成x的幂级数

将f(x)的导函数展开,再逐项积分即可到其展开式再问:那2sinxcosx怎么展开呢?再答:那不就是sin2x吗?

将函数f(x)=x/x∧2-x-2展开成x-1的幂函数

令f(x)=x/(x²-x-2)=x/(x-2)(x+1)=a/(x-2)+b/(x+1)去分母:x=a(x+1)+b(x-2)即x=(a+b)x+a-2b对比系数:1=a+b,0=a-2b

将这两个函数展开成x的幂函数,并求展开式成立的区间.

1.x/(9+x^2)=x/9*1/(1+x^2/9)=x/9*[1-x^2/9+x^4/81-x^6/729+...]=x/9-x^3/9^2+x^5/9^3-x^7/9^4+.收敛域为|x^2/9

将函数展开成x的幂级数

f(x)=(1-x)/(1-x)(1+x+x^2)(1-x)*[x^3+x^6+...+x^3n+...)]

将函数f(x)=ln(2+x)展开成x的幂级数不同展开方法结果不一样?

第一种做法:f'(x)=1/(2+x)=(1/2)Σ(-1)ⁿ(x/2)ⁿ两边从0到x积分得:f(x)-f(0)=Σ[(-1)ⁿ/(n+1)](x/2)^(n+1)

将函数f(x)=e的x次方展开成x的幂级数为( )

根据六大常用幂级数的展开式:f(x)=e^x=x+x^2/2!+x^3/3!+...+x^n/n!

将函数1/(2-x)展开成x的幂级数

解题过程请看附图.