将ln(x 根号1 x^2)展开为麦克劳林级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 14:21:54
将ln(x 根号1 x^2)展开为麦克劳林级数
将f(x)=ln(1-x)展开成x的幂级数,则展开式为

因为ln(1+x)=x-x^2/2+x^3/3-...+(-1)^(n+1)x^n/n+...所以f(x)=ln(1-x)=ln(1+(-x))=(-x)-(-x)^2/2+(-x)^3/3+...+

lim(x趋近于0)[1/ln(x+根号1+x^2)-1/ln(1+x)]

算出是- 1/2等价无穷小 + 洛必达法则当x→0时ln(1 + x) ~ xln[x + √(1 

将函数展开为幂级数将函数f(x)=1/(x²+x-2)展开成X的幂级数

f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2

为什么ln x在x=2点的泰勒展开可以写为ln(2+x-2)=.

泰勒公式的核心之一是要构造无穷小量,即极限为零的量和一个非零量,然后进行展开,这里的构造也是这个道理,x-2就相当于无穷小量

将函数f(x)=ln(1+x) 展开成x的幂级数.

解题过程在图片中哦...

在线等待;如何将函数f(x)=ln(2+x) ,展开成x的幂级数,

f(x)=ln(2+x)=ln[2*(1+x/2)]=ln2+ln(1+x/2)而(ln(1+x/2))'=1/2*1/(1+x/2)因为:1/(1+x)=1-x+x^2-x^3+...+(-1)^n

泰勒展开ln(1+x^2)

先求ln(1+x)在0处的泰勒展式,这个你不能不会.然后把式子里面的x替换成x^2就好了.看到我得先后顺序没?你看看书.,上面得例题,老兄“他展开时的各级导数不一样的”发现你似乎对泰勒级数不太了解.啊

求导ln(1+x+根号(2x+x^2))

ln′[1+x+√(2x+x2)]=1/[1+x+√(2x+x2)]×[1+(2+2x)/[2√(2x+x2)]=1/√(2x+x²)=√(2x+x²)/(2x+x²)1

函数展开为幂级数问题将f(x)=ln [x/(x+1)] 展开为(x-1)的幂级数 -ln2 + (n=1)∑ (-1)

当X=2的时候,只需要看∑后面的,变成了∑(-1)^(n+1)/n乘(1-1/2^n),这是一个变号级数,用莱布尼茨判别法,通项(去掉∑(-1)^(n+1)的部分)大于等于0,并且是单调递减趋于0的,

将f(x)=ln(1+x)/(1-x)展开成x的幂级数

一般的,f(x)在x=x0处展开成幂级数为:f(x)=f(x0)+f(x0)'(x-x0)+f(x0)''(x-x0)²/2+f(x0)"'(x-x0)³/3!+……+f(x0)(

将函数f(X)=(1+x)ln(1+x)展开成x的幂级数

f(X)=(1+x)ln(1+x)=ln(1+x)+xln(1+x)ln(1+x)=x-x^/2+x^3/3-……+(-1)^nx^n/n代入化简即可.

展开已知函数为X的幂级数 ln根号(1+X)/(1-x)

定义域为-1再问:答案用级数的方式表示是什么我算出来的和课后答案不一样再答:上面就是幂级数的方式呀再问:f(x)每项的通项公式?再答:通项为x^(2n-1)/(2n-1)

将下列函数在点x0展开为泰勒级数:ln(2+2x+x^2)^(-1) x0=-1 ; lnx x0=2;

应该是求展开得若干项吧!不是所有的函数都可以清晰地写出泰勒级数的所有项.楼主看看泰勒级数的部分吧.不过有一些泰勒级数的展开是比较好用的.见参考.第一问有问题吧!x0=-1->f(x)=1/0?是不是l

ln(1-x^2)泰勒展开3层.

f'(x)=-2x/(1-x²)f''(x)=[-2(1-x²)-(-2x)(-2x)]/(1-x²)²=-2(1+x²)/(1-x²)&#

将函数f(x)=ln(2+x)展开成x的幂级数不同展开方法结果不一样?

第一种做法:f'(x)=1/(2+x)=(1/2)Σ(-1)ⁿ(x/2)ⁿ两边从0到x积分得:f(x)-f(0)=Σ[(-1)ⁿ/(n+1)](x/2)^(n+1)

将函数ln(1+x-2x2)展开成x的幂级数.

因为ln(1+x-2x2)=ln(1-x)+ln(1+2x),故只需计算ln(1-x)以及ln(1+2x)的幂级数展开式即可.在−1≤x<1中,ln(1−x)=∞n=1(−1)n−1(−x)nn=∞n

将函数ln(x+√1+x^2)展开为x的幂级数,并指出其收敛半径.

见 同济六版高数总习题十二 10(1).

将函数f(X)=ln(1+x+x^2+x^3)展开成x的幂级数

原式=ln(1+x)+ln(1+x^2)=sigma[(-1)^n*x^n/n!]+sigma[(-1)^n*(x^2)^n/n!]=sigma{(-1)^n*[x^n+x^(2n)]/n!}其中,s