将fx=1 x2 3x 2展开成(x 4)的冪级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 04:07:03
将fx=1 x2 3x 2展开成(x 4)的冪级数
将f(x)=ln(1-x)展开成x的幂级数,则展开式为

因为ln(1+x)=x-x^2/2+x^3/3-...+(-1)^(n+1)x^n/n+...所以f(x)=ln(1-x)=ln(1+(-x))=(-x)-(-x)^2/2+(-x)^3/3+...+

将函数展开为幂级数将函数f(x)=1/(x²+x-2)展开成X的幂级数

f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2

将函数f(x)=1/(x^2+3x+2)展开成x的幂级数

f(x)=1/(x^2+3x+2)=1/(x+1)-1/(x+2)=1/(x+1)-(1/2)/(1+x/2)=∑(n=0,+∞)(-x)^n-(1/2)∑(n=0,+∞)(-x/2)^n|x|

将f(x)=1/(x∧2-4x-5)展开成x的幂级数

提示:先把f(x)写成:f(x)=-1/6*1/(1+x)-1/30*1/(1-x/5)1/(1+x)和1/(1-x/5)会展开吧.

将函数f(x)=1/x展开成(x-1)的幂级数,求收敛区间

f(x)=1/x=1/[1+(x-1)]=Σ(n从0到∞)(-1)^n*(x-1)^n收敛区间:|x-1|

将函数f(x)=1/(x+1)展开成(x-2)的幂级数

1/(x+1)=1/(3+x-2)=(1/3)/[1+(x-2)/3)]=(1/3)∑(0,+∞)(-1)^n[(x-2)/3)]^n|x-2|

求将函数f(x)=1/(2-3x+x)展开成x的幂级数?

f(x)=1/(x-2)(x-1)=1/(x-2)-1/(x-1)=1/2(1-x/2)+1/(1-x)=1/2∑(x/2)n+∑xn∑上面是无穷大,下面是n=0X范围为(-1,1)

将函数f(x)=1/x^2展开成(x+1)的幂级数

就讲一下思路了.(1)首先把f(X)=1/x^2看成是g(x)=-1/x的导数,也就是f(x)=g'(x).(2)将g(x)展开成x+1的幂级数.g(x)=-1/x=1/(1-(x+1))这样就可以把

将f(x)=arctan[(1+x)/(1-x)]展开成x的幂级数

这是因为等比数列的公比不同1/(1-x)=1+x+x^2+...+x^n+...1/(1+x)=1-x+x^2+...+(-1)^n*x^n把第二式x换成x^2就可以了

1、将x^4/(1-x)展开成x的幂级数2、将f(x)=lnx,x.=2在指定点处展开成泰勒级数.

1、x^4/(1-x)=x^4(1+x+x²+...)=x^4+x^5+x^6+...=Σx^(n+4)n=0→∞2、lnx=ln(2+x-2)=ln[2(1+(x-2)/2)]=ln2+l

试将f(x)=lnx展开成(x-1)/(x+1)的幂级数

一般来说,我们做f(x)展开成x的幂级数.所以我们要做该转换.首先,设u=(x-1)/(x+1)=>x=(1+u)/(1-u)那么题目等同于将ln((1+u)/(1-u))展开成u的幂级数那么ln((

将函数f(x)=1/1+2x展开成关于x的幂级数

为什么没有人回答呢,太简单了吗?根据等比数列公式,1/(1+2x)=1/(1-(-2x))=1+(-2x)+(-2x)^2+(-2x)^3+...+(-2x)^(n-1)+...,这是因为等比数列前n

将f(x)=ln(1+x)/(1-x)展开成x的幂级数

一般的,f(x)在x=x0处展开成幂级数为:f(x)=f(x0)+f(x0)'(x-x0)+f(x0)''(x-x0)²/2+f(x0)"'(x-x0)³/3!+……+f(x0)(

将f(x)=1/(x^2+5x+6)展开成(x+1)的幂级数

可以利用已知的展开式进行计算,如图.经济数学团队帮你解答.请及时评价.谢谢!

将y=(x^3-2x)/(x^2+x-2)展开成x+1的幂级数怎么展开?

F(X)=3/(X^2+X-2)=1/(X-1)-1/(X2)=-1/(1-X)-1/2*1/(1+X/2)函数1/(1-x)和1/1+x是一个公式,以及所述第二开关的xx/2.代入公式即可.收敛区域

将函数f(x)=1/(x+2)展开成x-1的幂级数.

经济数学团队帮你解答,有不清楚请追问.满意的话,请及时评价.谢谢!