将f(x)=cosx展开成(x-π 4)的幂级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:14:00
因为ln(1+x)=x-x^2/2+x^3/3-...+(-1)^(n+1)x^n/n+...所以f(x)=ln(1-x)=ln(1+(-x))=(-x)-(-x)^2/2+(-x)^3/3+...+
f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2
f(x)=1/(x^2+3x+2)=1/(x+1)-1/(x+2)=1/(x+1)-(1/2)/(1+x/2)=∑(n=0,+∞)(-x)^n-(1/2)∑(n=0,+∞)(-x/2)^n|x|
f(x)=1/x^2=1/[2-(x+2)]^2=1/4*1/[1-(x+2)/2]^2=1/4*{1+2*(x+2)/2+3*[(x+2)/2]^2+...+n[(x+2)/2]^(n-1)+.}=
提示:先把f(x)写成:f(x)=-1/6*1/(1+x)-1/30*1/(1-x/5)1/(1+x)和1/(1-x/5)会展开吧.
f(x)=1/(x+2)=1/[5+(x-3)]=(1/5){1/[1+(x-3)/5]}=(1/5)∑(n=0~∞)[-(x-3)/5]^n
f(x)=-1/3*1/(1-x/3)=-1/3*[1+x/3+x^2/9+x^3/27+x^4/81+.]=-1/3-x/9-x^2/27-x^3/81-...收敛域为|x|
f(x)=1/x=1/[1+(x-1)]=Σ(n从0到∞)(-1)^n*(x-1)^n收敛区间:|x-1|
1/(2+x)=1/(2+3+x-3)=1/5(1+(x-3)/5)=(1/5)*∑(-1)^n((x-3)/5)^n=(1/5)*∑(-1)^n(x-3)^n/5^nn从0到∞
解题过程在图片中哦...
就是先化成部分分式:令f(x)=x/[(x-3)(x+1)]=a/(x-3)+b/(x+1)去分母得:x=a(x+1)+b(x-3)即x=(a+b)x+a-3b对比系数得:a+b=1,a-3b=0两式
f(x)=1/(x-2)(x-1)=1/(x-2)-1/(x-1)=1/2(1-x/2)+1/(1-x)=1/2∑(x/2)n+∑xn∑上面是无穷大,下面是n=0X范围为(-1,1)
这是因为等比数列的公比不同1/(1-x)=1+x+x^2+...+x^n+...1/(1+x)=1-x+x^2+...+(-1)^n*x^n把第二式x换成x^2就可以了
cosx=1-x^2/2!+x^4/4!-…+〖(-1)〗^n/(2n)!x^2n+…
先将展开成部分分式f(x)=-1/3*1/(1-x)+2/3*1/(1+x)那么1/(1-x)和1/(1+x)会展开吧下略x/(x^2+x-2)=-(x/2)-x^2/4-(3x^3)/8-(5x^4
一般的,f(x)在x=x0处展开成幂级数为:f(x)=f(x0)+f(x0)'(x-x0)+f(x0)''(x-x0)²/2+f(x0)"'(x-x0)³/3!+……+f(x0)(
可以利用已知的展开式进行计算,如图.经济数学团队帮你解答.请及时评价.谢谢!
令t=x-1则x=t+1cosx=cos(t+1)=costsin1-sintcos1=sin1[1-t^2/2!+t^4/4!-...]-cos1[t-t^3/3!+t^5/5!-..]=sin1-
第一种做法:f'(x)=1/(2+x)=(1/2)Σ(-1)ⁿ(x/2)ⁿ两边从0到x积分得:f(x)-f(0)=Σ[(-1)ⁿ/(n+1)](x/2)^(n+1)