1 x-1的n阶导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:36:59
再问:那个问一下,y=sin^2x的n阶导数怎么求啊?
因为他是n+1阶多项式,所以求导n+1次就是最高阶系数乘(n+1)!就等于(n+1)!
回答可还满意,再答:再问:能不能在清楚点再答:1+x的n次方分之(-1)的1+n次方乘于(n-1)的阶乘再问:请你给我写写步骤再答:一阶导数是1+x分之一,二阶导数是-1/(1+x)三阶的是2/(1+
∵f′(x)=-1/(1-x)f′′(x)=-1!/(1-x)²f′′′(x)=-2!/(1-x)³.f^(n)(x)=-(n-1)!/(1-x)^n,(f^(n)(x)表示f(x
答:y=1/(1-x²)=-(x²-1)^(-1)y'(x)=2x(x²-1)^(-2)y''(x)=-2*(2x)²(x²-
这种题的做法都是将f(x)写成两个简单分式的和.分解的方法建议你要掌握,因为不定积分的时候还需要.设2x/(1-x^2)=2x/(1+x)(1-x)=A/(1+x)+B/(1-x),右边通分并比较等式
(x^2-1)^n的n阶导数先看这个:(x-1)^n=x^n-nx^(n-1)+n(n-1)/2*x^(n-2)-.+(组合Cnk)*x^(n-k)(-1)^k+.+(-1)^n再看这个:(x&sup
/>y=(1-x)/(1+x)=[2-(1+x)]/(1+x)=2/(1+x)-1dy/dx=-2/(1+x)²d²y/dx²=-2²/(1+x)³d
y'=2arcsinx/√(1-x²)(1-x²)y'=2arcsinx=2√y即(1-x²)y'²=4y两边取n阶导数,并用n阶导数的莱布尼茨公式可得结论再问
y=ln(x-1)-ln(x+2)y'=1/(x-1)-1/(x+2)y''=-(x-1)^(-2)+(x+2)^(-2)...y^(n)=(-1)^(n+1)*(n-1)!*(x-1)^(-n)+(
y'=1/(1+x)=(1+x)^(-1)y''=-1*(1+x)^(-2)y'''=-1*(-2)*(1+x)^(-3)=2*(1+x)^(-3)y''''=2*(-3)*(1+x)^(-4)=-6
y={1/[(x-1)(x-2)]}=(x-2)^(-1)-(x-1)^(-1)y的n阶导数=[(-1)(-2)(-3).(-n)×(x-2)^(-n-1)]-[(-1)(-2)(-3).(-n)×(
1、本题计算n阶导数,不需要使用Leibnizformula;2、本题只要先将分母因式分解,然后将分式拆成两项, 求高阶导数,就很容易了.3、具体解答过程如下:
观察y=x(x-1)(x-2)(x-3)……(x-n)的最高次数项为x^(n+1),求n阶导后成为(n+1)!x第二高次数项为-(1+2+3+……+n)x^n,求n阶导后取系数成为-n(n+1)/2所
f'(x)=1/(1+x)f''(x)=-1/(1+x)²……f(n)(x)=(-1)^(n+1)[(n-1)!/(1+x)^n]
y=x^n*(x+1)^(-1),然后x^n的n阶导数你应该能求出来,(x+1)^(-1)的n阶导数也很容易求,然后用乘积的n阶导数的莱布尼兹公式可以求出y的n阶导数.再问:我知道你说的方法,可我算不