1 x(x-1)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:04:07
令(1-x)/x=t^2,则:1-x=xt^2,∴(1+t^2)x=1,∴x=1/(1+t^2),∴dx=[2t/(1+t^2)^2]dt.∴∫{1/√[x(1-x)]}dx=∫{[(1-x)+x]/
=∫x^2dx+∫1/x^4dx=1/3x^3-1/3*1/x^3+C=1/3(x^3-1/*x^3)+C
也可以考虑,分子分母同时乘以1-cosx,被积函数化为:(1-cosx)/sin²xI=∫(1-cosx)/sin²xdx=∫[csc²x-cscxcotx]dx=-co
∫x^4/(1+x)]dx=∫[(x^4-1)+1]/(1+x)]dx=∫(x^4-1)/(1+x)+∫1/(1+x)dx=∫(x²+1)(x²-1)/(1+x)dx+∫1/(1+
用分步积分法∫ln(x+1)/√xdx=2∫ln(x+1)d√x=2ln(x+1)*√x-2∫√xdln(x+1)=2ln(x+1)*√x-2∫√x/(x+1)dx对于∫√x/(x+1)dx令√x=t
∫(1-x)^2/x^3dx=∫(1-2x-x^2)/x^3dx=∫(x^(-3)-2x^(-2)+x^(-1))dx=1/(-3+1)x^(-3+1)-1/(-2+1)x^(-2+1)+ln|x|+
=1/2∫1/(1+x^2)d(1+x^2)=1/2ln(1+x^2)+c
∫[√(x-1)/x]dxletx=(secy)^2dx=2secytanydy∫[√(x-1)/x]dx=∫2(tany)^2/(secy)dy=2∫(siny)^2/cosydy=2∫(1-(co
上下乘以X^2再积分再问:具体点再答:x^2/(x^3(1+x^3))dx=1/3*(1/(x^3(1+x^3)))dx^3=1/3(1/(t(1+t)))dt=1/3(1/t-1/(1+t))dt=
∫1/(x²+x+1)dx=∫1/[(x+1/2)²+3/4]d(x+1/2)=(2/✔3)arctan[(2x+1)/✔3]+c公式∫1/(x
对复杂部分求导,然后分部积分法,具体看图!
∫(-1,1)xe^(x|x|)dx=∫(-1,0)xe^(-x^2)dx+∫(0,1)xe^x^2dx=-1/2∫(-1,0)e^(-x^2)d(-x^2)+1/2∫(0,1)e^x^2dx^2=1
令x=tant则dx=sec^2tdt于是∫dx/[x(x^2+1)]=∫sec^2t/[tantsec^2t]dt=∫dt/tant=∫(cost/sint)dt=∫(1/sint)dsint=ln
de^x=e^xdxdx/1-e^x=1/e^x-e^2xde^x=1/t-t^2dt(其中t=e^x)=(1/t+1/1-t)dt=d(lnt-ln1-t)固dx/1-e^x=d(lne^x-ln(
∫1/[√x(1+x)]=∫1/(2√x)]=1/2∫1/√x=1/2∫(2√x)/√xd√x=1/2∫2d√x=∫d√x=√x再问:为什么你和答案不一样..再答:答案是什么?我那个还可以化的,因为我
∫1/(1+cosx)dx=∫(1-cosx)/[1-(cosx)^2]dx=∫[1/(sinx)^2-cosx/(sinx)^2]dx=∫(cscx)^2dx-∫1/(sinx)^2d(sinx)=
∫x(1+lnx)dx=∫(1+lnx)d(x²/2)=(1/2)x²(1+lnx)-(1/2)∫x²d(1+lnx)=x²/2+(1/2)x²lnx
这两个是一样的上面一个常数是C下面一个是1/3+C考虑到C的任意性,本质是一样的关键是看含有x的项要一样