对于自然数n,已知91÷n.83÷n和53÷n三个算式的余数和是51,求n的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:53:23
对于自然数n,已知91÷n.83÷n和53÷n三个算式的余数和是51,求n的值
已知数列{an}前n项和为Sn,对于n属于自然数,总有Sn=(a1+an)n/2,求证{an}为等差数列.

证明:由题意知,知道Sn,必定用an=Sn-Sn-1n>1a1=S1代入Sn知,a1=S1恒成立an=Sn-Sn-1n>1时,有an=(a1+an)n/2-(a1+an-1)(n-1)/2不妨再写一项

对于每个非零自然数n,抛物线y=x2-2n+1n(n+1)

y=x2-2n+1n(n+1)x+1n(n+1)=(x-1n)(x-1n+1)故抛物线与x轴交点坐标为(1n,0)和(1n+1,0)由题意,AnBn=1n-1n+1那么,A1B1+A2B2…+A200

试说明,对于任意的自然数n,代数式n(n+7)-(n-3)·(n-2)的值能被6整除.

n(n+7)-(n-3)·(n-2)展开=n方+7n-n方+5n-6=12n-612能被6整除所以12n(n为自然数)均能被6整除所以12n-6能被6整除或继续展开12n-6=6(2n-1)能被6整除

对于所有自然数,n*n+n=41都是质数,

不是.n*n+n+41=n(n+1)+41当n=40时,n(n+1)+41=40*41+41=41^2当n=41时,n(n+1)+41=41*42+41=41*43显然不是质数

已知函数f(x)=(2^x-1)/(2^x+1),证明对于任意不小于3的自然数n都有f(n)>n/(n+1)

要证f(n)>n/(n+1)即证1-2/(2^n+1)>1-1/(n+1)即证1/(n+1)>2/(2^n+1)即证2^n+1>2n+2即证2^n>2n+1数学归纳法:当n=3时2^3=8>7=2*3

已知函数f(x)=(x^2-1)/(x^2+1),证明对于任意不小于3的自然数n都有f(n)>n/(n+1)

f(n)-n/(n+1)=(n^2-1)/(n^2+1)-n/(n+1)=((n^2-1)(n+1)-n(n^2+1))/((n^2+1)(n+1))=(n^3+n^2-n-1-n^3-n)/((n^

对于任意自然数n,代数式n(n+3)-(n-4)(n-5)的值都能被4整除吗?请说明理由

当然是了.因为n(n+3)-(n-4)(n-5)=12n-20=4(3n-5)再问:需要写∵和∴的这道题再答:∵n(n+3)-(n-4)(n-5)=12n-20=4(3n-5)∴对于任意自然数n,代数

已知对于任意的自然数n,都有f(n+1)+f(n-1)=2f(n),其中f(0)≠0,f(1)=1

这不就是等差数列的定义吗?问什么问题?f(n+1)-f(n)=f(n)-f(n-1)=f(1)-f(0)=df(n)=f(1)+(n-1)d=1+(n-1)d

已知:对于任意非零自然数n,都存在一个自然数m,m>1,似的mn+1是一个合数

n=1,m=3(等等)即可n>1,令m=n+2,则mn+1=(n+2)*n+1=(n+1)^2因为n>1,所以mn+1是合数

对于所有自然数n,代数式n*n-n+11的值都是质数

不是吧?n=11n*n-n+11=11*11不是质数

已知数列an是递增数列,且对于任意的自然数n【n大于等于1】,an=n2+入n恒成立,入的范围

an-a(n-1)(n>2)=n^2+λn-(n-1)^2-λ(n-1)=n^2-(n-1)^2+λ=2n-1-λ数列an是递增数列2n-1+λ>0λ>1-2nn>2λ>-3

试证明,对于任意的自然数n,代数式n(n+7)-(n+3)(n-2)总6能被整除

证明:n(n+7)-(n+3)(n-2)=n^2+7n-n^2-n+6=6n+6=6(n+1)因此代数式n(n+7)-(n+3)(n-2)无论对任意自然数n都能被6整除

已知n²+n(其中n为自然数)

①:当n=0时,n²+n=0;当n=1时,n²+n=2;当n=2时,n²+n=6;当n=3时,n²+n=12;当n=4时,n²+n=20;②:由①可以

求证:对于任意自然数n,(n+5)-(n+2)(n+3)一定能被6整除

(n+5)-(n+2)(n+3)=6n在这里没有意义应该是“n*(n+5)-(n-3)*(n+2)”可以被6整除...n*(n+5)-(n-3)*(n+2)=n^2+5n-(n^2-n-6)=6n+6

1.请你说明对于任何自然数n,代数式n(n+5)-(n-3)(n+2)的值都能被6整除

1、n(n+5)-(n-3)(n+2)=n^2+5n-(n^2+2n-3n-6)=6n-6=6(n-1),n为自然数,故能被6整除;2、建立方程:m+1+2m-1=3,n+1+2n-1=6,求得m=1

已知数列an中,a1=3对于一切自然数n,

整理得αβ-(α+β)-1=01/an-2a(n+1)/an-1=01-2a(n+1)-an=02a(n+1)=an-12(a(n+1)-1/3)=an-1/3(a(n+1)-1/3)/(an-1/3

求证:对于任意自然数n代数式n(n+7)-n(n-5)+6的值都能被6整除.

n(n+7)-n(n-5)+6展开得到n²+7n-n²+5n+6=12n+6=(2n+1)*6很显然可以判定结果!