对于任意两个正整数m,n(m>n),组成勾股数的三个代数式为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:05:20
在VS2010上测试通过:#includeusingnamespacestd;boolis_prime(intx){\x09inttmp=x/2;\x09for(inti=2;i>n;\x09for(
满足m²+n²=115²的实数可以取:m=69,n=92理由:115=5×23,所以115²=5²×23²因3²+4²=
奇偶性相同的时候,有9对,即1,19;2,18;3,17;4,16;5,15;6,14;7,13;8,12;9,11奇偶性不同的时候,有1对,即4,5
用逆推法再答:第一个m&n=m+n/2=6前边有没有括号?再答:先写一奇一偶的再答:√ab=6则ab=36再答:则一奇一偶情况为(1,36)(3,12)(4,9)(9,4)(12,3)(36,1)
#include <stdio.h>int isPrimeNum(int x)//判断是否为素数 {
6^n末尾数字始终为6,5^n末尾数字始终为5(n为任意正整数).显然,当m末尾为6或5时,m的n次方末尾数字不变.至于其他情况我就不了解了,
分两种情况讨论:①m、n同奇或同偶:为(1,35)、(2,34)、(3+33).(35,1)、(35,1)共计35组②m、n异奇偶:先对36进行因式分36=2×2×3×3异偶的情况有:(1,36)、(
#include"stdio.h"intis(intnumber){inttemp=number,sum=0;if(temp0){sum+=(temp%10)*(temp%10)*(temp%10);
最大公约数:intGcd(inta,intb){if(a%b==0)returna;return(b,a%b);}最小公倍数:intGbs(inta,intb){returna*b/Gcd(a,b);
a=m^2+n^2b=m^2-n^2c=2mnb^+c^2=(m^2-n^2)^2+(2mn)^2=m^4-2m^2*n^2+n^4+4m^2*n^2=m^4+2m^2*n^2+n^4=(m^2+n^
#includevoidmov(int*x,intn,intm);intmain(void){inti,m,n;inta[80];scanf("%d%d",&n,&m);for(i=0;iscanf(
voidmain(){intm,n,i,t;intfactorsum(intnumber);//声明一个方法factorsum(intnumber)printf("Inputm(m>=1):")
#include"iostream"usingnamespacestd;boolis(intnumber){intsum=0,num=number;while(num>0){sum+=(num%10)
M²+N²2MNM²-N²
利用放缩法,需要把左式放小,既左式分母放大,你应该知道吧:lnX小于等于X-1.所以左式可放小为1/M+1/(M+1).+1/(m+n-1),继续放小左式为n/(m+n-1)所以只需证明m+n-1)小
另一方面,g(m)+n和g(m)+n+1中必有一个不被p整除,于是(g(m)+n)(g(n)+m)和(g(m)+n+1)(g(n+1)+m)中必有一个含素因子p的方次为奇数,与完全平方性矛盾.&nbs
反证法,假设都不是3的倍数因为m-n不是3的倍数,所以m、n除以3不同余因为mn不是3的倍数,所以m、n均不是3的倍数,那么只有可能一个余1,一个余2则此时m+n是3的倍数与假设矛盾故得证.
证明:将正整数p质因数分解为2^a·5^b·q的形式,其中(q,10)=1则(9q,10)=1,∴由欧拉定理得,9q|10^φ(9q)-1.再设t=max(a,b)则9p=2^a·5^b·(9q)|1
#include#defineMax90intmain(){longlongf[Max];inti,m,n;f[0]=1;f[1]=1;for(i=2;i
m的结尾为0,1,5或6时,对于任意的正整数n,m的n次方的末尾数字都是不变的.不要怀疑,就是这样的