对于二项分布的随机变量,求方差公式D(x)=(1-p)·np是怎么推导出来...
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:41:12
能提出此问题,说明你很用心.此问题可以这样理1.举个例子:|X|=X,X>0;—X,X0])+E(-X*1[X0]为示性函数.2.X—Y>0时并不代表|X—Y|=X—Y,除非P(X-Y>0)=1;3.
再答:不客气
期望=np=12;方差=np(1-p)=8
X服从B(3,0.4),故X可取值为0,1,2,3当X=0时,Y=0当X=1,Y=-1当X=2,Y=0当X=3,Y=3所以,Y是个离散型随机变量,可取的值为-1,0,3P(Y=-1)=P(X=1)=C
不用积分的啊.B(3,0.4),EX=3*0.4=1.2,DX=3*0.4*0.6=0.72,E(X^2)=(EX)^2+DX=1.2^2+0.72=2.16.(1).E(X1)=E(X^2)=2.1
如果x服从二项分布B(n,p)则其期望E=np,方差D=np(1-p),期望和方差之比4/3,即np/[np(1-p)]=1/(1-p)=4/3所以1-p=3/4,即p=1/4,选择C答案
X--B(n,p)==>p(x)=C(n,x)p^x(1-p)^(n-x)Y=e^(mx)==>E(Y)=所有的y求和y*p(y)=所有的x求和e^(mx)*p(x)=所有的x求和e^(mx)*[C(
X--B(n,p)P(x)=C(n,x)p^x(1-p)^(n-x)Y=e^(mx)E(Y)=所有的y求和Σy*P(y)=所有的x求和Σe^(mx)*P(x)=所有的x求和Σe^(mx)*[C(n,x
可利用期望与方差的公式如图计算.经济数学团队帮你解答,请及时采纳.
二项分布b(n,p)期望np方差np(1-p)几何分布G(p)期望1/p方差(1-p)/(pXp)
证明:方差D(ξ)=E(ξ^2)-[E(ξ)]^2=0^2×C(0,n)q^n+1^2×C(1,n)pq^(n-1)+……+n^2×C(n,n)p^n-(np)^2=np[C(0,n-1)q^(n-1
这个有公式的呀,E(X)=np,Var(X)=np(1-p)所以E(X)=36×1/3=12,Var(X)=36×1/3×2/3=8.
(n,p),其中n≥1,0
方差:S^2=(1/n)((X1-平均数)^2+(X2-平均数)^2+…+(Xn-平均数)^2)标准差:S=√((1/n)((X1-平均数)^2+(X2-平均数)^2+…+(Xn-平均数)^2))
Dξ=∑(ξ-Eξ)^2*Pξ=∑(ξ^2+Eξ^2-2*ξ*Eξ)*Pξ=∑(ξ^2*Pξ+Eξ^2*Pξ-2*Pξ*ξ*Eξ)=∑ξ^2*Pξ+Eξ^2*∑Pξ-2*Eξ*∑Pξ*ξ因为∑Pξ=1
E(X)=1·1/4+2·1/3+3·1/6+4·1/4=29/12E(X²)=1²·1/4+2²·1/3+3²·1/6+4²·1/4=85/12D(
想想二项分布泊松分布和0-1分布的关系就求出来了几何分布就是求级数的和函数自己算算呗查看原帖
EX=0,DX=1,E(X^2)=DX+(EX)^2=1X服从标准正态分布,X^2服从自由度为1的κ方分布,D(X^2)=2
由于没有具体例子,只给你思路,这种题你只要将二项分布求出来,而后根据方差定义,求出分布列的均值,然后直接套用方差定义式就行了,再问:分布列均值怎么求再答:比如说,一个二项分布,其为1的概率为0.8,为
负二项分布p{X=k}=f(k;r,p)=(k+r-1)!/[k!(r-1)!]p^r(1-p)^k,k=0,1,2,...,0正无穷)kf(k;r,p)=sum(k=1->正无穷)k(k+r-1)!