对ab属于r记maxab等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:47:41
证明:∵1/a+9/b=1①且a,b∈R+①两边同时乘以ab(>0),得9a+b=ab于是ab=9a+b≥2根号(9ab)上式两边同时平方得ab≥36得证
再问:答案是0再答:是的,是我错了。
1,证明:设任意的r∈Q,r≠0,由②知r∈S,或,-r∈S之一成立.再由①,若r∈S,则r²∈S;若-r∈S,则r²=(-r)*(-r)∈S.总之,r²∈S取r=1,则
2、当x=y时,f(2x)=f(x)的平方,所以f(x)≥0(感觉你在个题目好像少了一个条件,应该能得到f(x)>0的)任取x1、x2∈R,且x1<x2,则x2-x1>0,f(x2-x1)>1f(x1
楼主我给你说说这种类型的题的通用解法:这种题可以采用图解法来解决,怎么做呢?你把|x+1|和|x-2|的函数图像画出来,然后用红笔把每个x对应的f(x)的最大值标上颜色(此时一个x可以对应两个f(x)
f(x+2)=-f(x)f(x+4)=-f(x+2)=f(x)f(x)周期为4f(19)=f(3)=--f(1)f(--1+2)=-f(--1)f(1)=-f(--1)f(x)是定义在R上的偶函数f(
ab+4大于等于(2倍跟号4ab=4倍跟号ab)4a+b大于等于(2倍跟号4ab=4倍跟号ab)不等式相加:ab+4a+b+4大于等于8倍跟号ab当且仅当a=b=2时,等号成立
(1)配方2(a^2+b^2)-2(ab+a+b-1)=(a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)=(a-b)^2+(a-1)^2+(b-1)^2>=0(2)判别式令f(a
∵a²+b²≥2aba²+2ab+b²≥4ab(a+b)²≥4ab两边同时开平方,得:a+b≥√4aba+b≥2√a
1. max{a,b}={a,a>=b;b,a<b} 取两个数中的较大者x=0 &nb
因为(a-b)^2>=0,(b-c)^2>=0,(c-a)^2>=0所以2(a^2+b^2+c^2)-2ab-2bc-2ac>=0所以a^2+b^2+c^2大于等于ab+bc+ac当且仅当a=b=c时
设a+b=t,则a=t-b.[1]代入条件得:(t-b)^2+2b^2=6,3b^2-2tb+(t^2-6)=0.[2]∵b是实数,∴判别式Δ≥0,即4t^2-12(t^2-6)≥0,化简得:t^2≤
最简单的方法就是:a^2+b^2≥2abb^2+c^2≥2bcc^2+a^2≥2ca上面相加得到:2(a^2+b^2+c^2)≥2(ab+bc+ca)∴a^2+b^2+c^2≥ab+bc+ac
(a-1)²+(b-1)²≥0所以a²+b²-2a-2b+2≥0即a²+b²≥2a+2b-2
|x+1|>=|x-2|时 x>=1/2 &nb
存在x属于R,使得x3-x2+1大于0而不是任意的x原命题指的是对于所有实数都有x3-x2+1小于等于0否定是对于实数R中,存在大于0的实数.例如x=10,而并非说所有的实数都符合大于0.补充下,这就
a,b属于r+,a+b+(1/根号ab)>=2√(ab)+1/√(ab)>=2√[2√[(ab)*1/(ab)]=2√2
|1+ab|/|a+b|
这个题选A,“任意(倒立的A标记表示)属于”的否命题是“存在(反写E标记表示).这个是此题的考察点.如果这个题的选项中还有实际的关于X的取值,可以通过画函数图的方法来解答分别画x^3与x^2-1的图,