1 tan²tdt
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:37:45
求由y=x,y=x²和y=x²所围成的平面图形的面积?交点:(0,0),(1,1),(2,4)A=∫(0→1)[(2x)-(x)]dx+∫(1→2)[(2x)-(x²)]
不定积分:1.题似乎没写对,∫e^(5t)dt=(1/5)e^(5t)+C2.(-1/2)[(2-3x)^(2/3)]+C3.-2cos√t+C4.(-1/2)e^(-x^2)+C5.(-1/4)[(
这个题目把后面的定积分解出来就可以了吧sec(t)平方的积分=tan(t)所以∫上面是(x-y)下面是0,里面是sec(c上有指数2)(tdt)=tan(x-y)-tan(0)=tan(x-y)所以2
定积分就是将:上限的值带入不定积分减去下限的值带入不定积分(2个相同的常数C相互抵消了).
∵tanαtanα−1=-1,∴tanα=12,∴sinα−3cosαsinα+cosα=tanα−3tanα+1=−53.
∫(sinx→0)sin^2tdt=1/2-1/4sin2xlim(x→0)∫(sinx→0)sin^2tdt/x^3=lim(x→0)(1/2-1/4sin2x)/x^3=lim(x→0)(1/2-
显然f(1)=0;由微积分基本定理知道f'(x)=sin(x^3)/x^3*3x^2=3sin(x^3)/x.于是∫(0,1)x^2f(x)dx=∫(0,1)f(x)d(x^3/3)=x^3*f(x)
用部分积分公式:令t=u,e^t=v.则:∫t*e^tdt=∫udv=uv-∫vdu=t*e^t-∫e^tdt=t*e^t-e^t+C
=-∫(0,1)dx∫(x^2,1)xsint/tdt=-∫(0,1)dt∫(0,t^1/2)xsint/tdx=-1/2cost|(0,1)=1/2(cos1-1)
∵tanα•1tanα=k2−3=1,∴k=±2,而3π<α<72π⇒2π+π<α<2π+32π,∴tanα>0,得tanα+1tanα>0,∴tanα+1tanα=k=2,有tan2α-2tanα+
∫dt/√t=2∫d√t=c+2√t
∫(t^2-1)×t/2tdt=1/2∫(t^2)dt-1/2∫dt=1/6t^3-1/2t+C
tan75°=tan(30°+45°)=33+11−33=2+3.
F'(x)=sinx/x这是变上限积分的定义式
y'e^x+ye^x-ye^x=1y'e^x=1y'=e^(-x)y=-e^(-x)+c又x=0时y(0)-0=0+1y(0)=1所以1=-1+cc=2即解y(x)=-e^(-x)+2
这道题不是很难,把cos²t化成2倍角,然后用分步积分就行了,就是麻烦点
题目式子写漏了吧,没有等号,不是函数,只是一个代数式再问:我的书上没有写,可能是印错了吧,求加上等号的详细解答再答:那就按y=∫(y,0)e^(t^2)dt+∫(1,x^2)cos√tdt的来试试求一
三角函数与反三角函数的问题要准确结果只能用计算器了一般的数学题答案写arctan4就可以了如果非要个过程的话就要找反三角函数的函数图象了反正切函数y=arctanx的主值限在-π/2