1 n²是收敛还是发散
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:59:05
这里:an=sin[npi+1/ln(n)]=[(-1)^n]*sin[1/ln(n)]知级数为交错级数.当n趋于无穷大时,1/ln(n)趋于0,因而sin[1/ln(n)]趋于0.又:sin[1/l
发散.∑|(-1)^n+1*n!/2n^2|=∑n!/2n^2,lim(n→∞)U(n+1)/Un=lim(n→∞)n^2/(n+1)=+∞,所以原级数发散.
发散数列,单独的(n+1)/n是收敛数列,可是乘以-1之后,就不收敛了.故发散
再问:再答:积分不会?再问:这样做对不对啊再答:再问:再问:哥们儿,在不在啊,这个感应电动势方向是怎么判定啊再答:哈哈3年没看了你让我怎么答再问:那为啥你高数都会嘞再答:我学数学的啊再问:果然叼,给跪
收敛,Dirichlet判别法.这是最典型的一个用Dirichlet判别法判别收敛的例子.sinn的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[c
若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因
假设收敛,可以设a=limsinn,则limsin(n+2)=a.而sin(n+2)-sinn=2cos(n+1)sin1,得lim2cos(n+1)sin1=a-a=0,则limcos(n+1)=0
如果仅仅是1/(n+1)的话,那它是收敛的.因为当n趋于无穷大时,n+1也是趋于无穷大.那么它的倒数,也就是1/(n+1)就趋于0.
利用交错级数的莱布尼茨判别法,对于交错级数∑(-1)^nUn,若{Un}单调下降趋于0,则级数收敛令Un=lnn/(n^p)(1)当p≤0时,可知|(-1)^nUn|不趋于0,所以级数发散(2)当p>
发散,因为它和1/n等价,lim(1/n)/[1/(n+1)]=1(n趋近于∞时)所以他俩的敛散性一致又因为1/n发散,所以1/(n+1)也发散再问:�ȼۣ�������Ϊ���ǵ�n����һ���
先回答标题中的问题,发散∑1/n^p我们称为p级数,当且仅当p>1的时候收敛,证法许许多多至于你说的这个判别方法,要记住一点不论是达朗贝尔,还是柯西法,都是说1时发散,=1的时候这俩法则都不起作用,因
发散,因为形如1/1+1/2+1/3+…+1/n+…的级数称为调和级数,它是p=1的p级数.调和级数是发散级数.在n趋于无穷时其部分和没有极限(或部分和为无穷大).
条件收敛收敛K>1发散再问:亲,你确定不?
收敛..当n趋向很大是,xn趋向于0证明:对任意给定的e,取N=1/e,当n>N时|xn-0|
发散数列.当n=2k时,趋于-1当n=2k+1时,趋于1所以发散.再问:当n=2k+1时xn=0啊再答:设主要用来决定=[(-1)^(n+1)的符号如果是1+(-1)^n那么:当n=2k时,趋于2当n
发散...这是个P级数,p级数收敛要其指数大于1,题目的指数是1/2
∑(-1)^n[1-cos(1/n)]对应的正项级数∑[1-cos(1/n)]=∑2{sin[1/(2n)]}^2后者收敛,则原级数绝对收敛.
|(-1)^n(1-cos2a/n)|与B/n^2是等价无穷小,绝对收敛再问:可以帮我解释详细一点吗?我没懂,这个n是趋近于无穷大的,不能用等价代换吧再答:1-cos2(a/n)=2sin²
{an}是莱布尼茨交错级数,故收敛1/(n+根号n)>1/(n+n)=1/2n,因为{1/2n}发散,所以{│an│}也发散因此,{an}条件收敛