1 ln²n是发散的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:55:27
首先,由Leibniz判别法,可知级数∑(-1)^n/√n收敛.两级数相减得∑(-1)^n·(1/√n-1/(√n+(-1)^n))=∑1/(√n(√n+(-1)^n)).这是一个正项级数,通项与1/
(-1)的n次方*根号下(n-根号n)-根号n当n是偶数时式子等于根号下(n-根号n)-根号n=[n-根号n-n]/[根号下(n-根号n)+根号n]=-根号n/[根号下(n-根号n)+根号n]-1/2
发散数列,单独的(n+1)/n是收敛数列,可是乘以-1之后,就不收敛了.故发散
(lnn)^2<n(参看下图所示)所以1/n<1/(lnn)^2而1/n数列是发散的,根据比较判定法即得.
级数1/n的平方是收敛的级数1/n^m当m>1时是收敛的当0
假设收敛,可以设a=limsinn,则limsin(n+2)=a.而sin(n+2)-sinn=2cos(n+1)sin1,得lim2cos(n+1)sin1=a-a=0,则limcos(n+1)=0
如果仅仅是1/(n+1)的话,那它是收敛的.因为当n趋于无穷大时,n+1也是趋于无穷大.那么它的倒数,也就是1/(n+1)就趋于0.
利用交错级数的莱布尼茨判别法,对于交错级数∑(-1)^nUn,若{Un}单调下降趋于0,则级数收敛令Un=lnn/(n^p)(1)当p≤0时,可知|(-1)^nUn|不趋于0,所以级数发散(2)当p>
发散,因为形如1/1+1/2+1/3+…+1/n+…的级数称为调和级数,它是p=1的p级数.调和级数是发散级数.在n趋于无穷时其部分和没有极限(或部分和为无穷大).
第一个发散,因为单项ln(1/n^2)->ln0->负无穷而不是0第二个发散,因为单项[n/(n+1)]的n次方={[1-1/(n+1)]的(n+1)次方}的n/(n+1)次方趋向于(1/e)^1=1
1、是02、此为调和级数用反证假设收敛于s记前n项和为sn则s2n-sn→s-s=0但是s2n-sn=1/(n+1)+1/(n+2)+……+1/2n>(1/2n)*n=1/2显然不会等于0矛盾假设不成
两个方法.(1)按定义,将一般式写成ln(n+1)-ln(n),求得部分和数列Sn=ln(n+1),极限为无穷大,原级数发散.(2)用比较审敛法的极限形式,因为级数的一般项ln(1+1/n)与1/n是
再问:这是分开的两题........第二题和第一题无关.............能麻烦给下第二题的解答吗谢谢!
因为n*1/(lnn)^10={n^0.1/(lnn)}^10当n->无穷时,上述极限为无穷(用罗比达法则,上下求导即可看出)因为1/n是发散的,原式也发散
我开始做的也是收敛,纠结了,不过换种思路就是列出几项,你会发现这个式子和等于(根下(n+1)-根下1),这个和s极限为无穷,结果是发散再问:是啊,但是用比值判别法貌似又是收敛的……
因为1/(xlnx)在[2,+oo)上的广义积分是发散的,而1/(xlnx)是单调的.再问:讲明白点,我看的是数三全书里出分现的,最好写大概的证明过程,搞懂了追加!再答:看来你知识比较少,就给你讲最简
答:柯西积分判别法:若f(x)x>0是非负的不增函数,则级数∑[n从1到正无穷]f(n)与积分∫[1到正无穷]f(x)dx同时收敛或同时发散.记f(x)=1/(xln(x+1)),满足f(x)x>0是
方法1比较审敛法:因为lnn>1得1/(n×lnn)