1 lnx (xlnx)^2的不定积分为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:32:55
设x=e^t,dx=e^tdt,lnx=t不定积分(x+(lnx)^3)/(xlnx)^2dx=(e^t+t^3)/(te^t)^2e^tdt=不定积分(1/t^2)dt+不定积分te^(-t)dt=
令t=(1-lnx)/(1+lnx)得lnx=(1-t)/(t+1)x=e^[(1-t)/(t+1)]所以f(t)=(1-t)/(t+1)*e^[(1-t)/(t+1)]即f(x)=(1-x)/(1+
(1)g'(x)=ln(x)-1,所以x>e时单调增,x
原式=∫1/(xlnx)dx=∫1/(lnx)dlnx=lnllnxl+C绝对值很重要
楼上第二题做得太麻烦了,第三题不对.1、∫x²/√(4-x²)dx令x=2sinu,则√(4-x²)=2cosu,dx=2cosudu=∫(4sin²u/2co
∫xf(x)dx=∫xd(xlnx)=x^2lnx-∫xlnxdx=x^2lnx-1/2∫lnxd(x^2)=x^2lnx-1/2x^2lnx+1/2∫x^2d(lnx)=1/2x^2lnx+1/2∫
(1)∫dx/(1+√x)=∫2√xd(√x)/(1+√x)=2∫[1-1/(1+√x)]d(√x)=2[√x-ln(1+√x)]+C(C是积分常数)(2)∫[(1+lnx)/(xlnx)²
=-1/(xlnx)-∫dx/(x2;lnx)∫dx/(x2;lnx)C(提示:在上式第一个积分应用分部积分,C是积分常数)=-1/(xlnx).
=∫(1+lnx)/(xlnx)^3dx+∫1/[x(lnx)^3]dx第一个积分,令u=xlnx,du=(1+lnx)dx∫(1+lnx)/(xlnx)^3dx=∫1/u^3du=-1/2·1/u^
∫xlnx/(1+x^2)^2dx=1/2*∫lnx/(1+x^2)^2d(1+x^2)=-1/2*∫lnxd[1/(1+x^2)]=-1/2*lnx*1/(1+x^2)+1/2*∫[1/(1+x^2
用换元法,令t=xInx,则求导得dt=(Inx+1)dx,原积分化为求dt/(t^2),接下来会求了吧
[ln(x+1)/lnx]'=[lnx/(x+1)-ln(x+1)/x]/ln²x=[xlnx-(x+1)ln(x+1)]/[x(x+1)ln²x]这个函数的导数很简单啊,没必要用
分步求导,先对x求导,再对lnx求导
∫(lnx-1)/ln²xdx=∫1/lnxdx-∫1/ln²xdx=x/lnx-∫xd(1/lnx)-∫1/ln²xdx=x/lnx-∫x*-1/ln²x*1
原式=∫dx/lnx-∫dx/ln²x=∫dx/lnx-∫xd(lnx)/ln²x(∵dx=xlnx)=∫dx/lnx-(-x/lnx+∫dx/lnx)+C(第二个积分应用分部积分
没错呀xlnx的导数是lnx+1,但[(1-x)ln(1-x)]'=[ln(1-x)+1](1-x)'=-ln(1-x)-1这用的是复合函数的求导公式xlnx+(1-x)ln(1-x)的导数lnx+1
d(xlnx)=(1+lnx)dx所以原式=∫(1+lnx)/(xlnx)^2dx=∫(1+lnx)/(1+lnx)(xlnx)^2d(xlnx)=∫1/(xlnx)^2d(xlnx)=-1/xlnx
赋值,用e^x赋值代入得f(x)=x*e^x/(1+x)^2再问:能写具体点么?谢谢!再答:用e^x代入到x中得f(lne^x)=e^x*lne^x/(1+lne^x)^2f(x)=e^x*x/(1+