1 ax 的n次方展开式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:33:44
前三项系数成等差数列,即2*n*(1/2)=n(n-1)/2*(1/2)^2+1得n=1(舍去),n=81.含x的5次方的项是T3=C(8,2)*x^6*1/(2√x)^2=7x^52.系数最大的项有
令x=1(x的平方+1/x)的n次方=2^n=32n=5二项展开式中x=(C³5)*x²的平方*(1/x)的立方二项展开式中x的系数10
[(√x+1/3根下x)ⁿ]²令x=1就可以得到展开式系数和为(1+1/3)^(2n)=(4/3)^(2n)
设X1=X2=...=Xn=1,代入式中即得展开式的所有项的系数的和2*2^2*2^3*.*2^n=2^(1+2+...+n)=2^((1/2)*n*(n+1))
答案:54令x=1的4^n=256,所以n=4,所以x^2的系数为C_(42)×3^2=54如果满意请点击右上角评价点【满意】即可~
(1+x)^2nn次方系数是(C上面n下面2n)x^n(1+x)^2n-1n次方系数是(C上面n下面2n-1)x^n(C上面n下面2n)=[(2n)*(2n-1)……(n+1)]/n阶乘=2n/n*[
(1+2x)^n展开式中x^3的方面Cn(n-3)*1^(n-3)^3*(2x)^3=Cn(3)*8x^3=n(n-1)(n-2)*8/3*2*x^3=4n(n-1)(n-2)/3*x^3x^2的方面
(2^2n)-2^n=56,解得:2^n=8,n=3(1):C(3,2)X.(1/X)^2=3/X(2):C(6,3)Y^3(根号Y)^3=20Y^(9/2)
等于2(ax-1)的5次方展开后是=a5x5-5a4x4+10a3x3-10a2x2+5ax-1,(a和x后的数值为它的次方数)其中a的三次方的系数是10a的三次方,a的三次方就等于8,a就等于2.
展开式中第m+1项是T(m+1)=Cn取m*(2x)^m=2^m*Cn取m*x^m由已知得Cn取4最大,所以n=7所以展开式中系数=2^m*C7取m当m=5时,系数最大=672所以是672x^5,对应
杨辉三角:111121133114641…………其中第一行代表(a+b)的零次方展开式1每项的系数.第二行代表(a+b)的一次方展开式a+b每项的系数.第三行代表(a+b)的二次方展开式a^2+2ab
前三项的系数分别为1,-n,n(n-1)/2则1-n+n(n-1)/2=28化简得n²-3n-54=(n-9)(n+6)=0由于n为正整数,则n=9.
本体中:系数=二项式系数.Cn(r-1)/Cnr=r/(n-r+1)=3/8,Cnr/Cn(r+1)=(r+1)/(n-r)=8/14解得,n=10,r=3.n=10,一共11项.系数最大项为中间项第
(1+ax+by)^n其展开式中不含x的项,就是所有k个1和n-k个by相乘所得的关于y的多项式的和(k=0,1,2,……,n).令x=0,y=1,便得展开式中不含x的项的系数的和为(1+b)^n.考
选D将1+by看成整体,由二项式定理知:原式=(1+by)^N+{系数}x,所以令y=1,得:(1+b)^n=243同理:(1+a)^n=32,验证后只有选D!
因为243是3的五次方 32是2的五次方 负数的奇次方仍为奇数,所以不考虑再问:若
(3x的平方-1/3√x)的n次方的展开式(3x^2)^n+C(n,1)(3x^2)^(n-1)(-1/3√x)+C(n,2)(3x^2)^(n-2)(-1/3√x)^2+.+(-1/3√x)^n含有
(x²+ax+1)=[(ax+1)+x²]则:[(ax+1)+x²]^6的展开式中,含有x²的项在:1、C(1,6)×[(ax+1)^5]×[x²]中
二项式(ax+1)的5次方,展开式中含x的3次方项的系数C(5,3)(ax)^3=10a^3x^310a^3=80a^3=8a=2