实数x,y,z成等差,(z-x)^2-4(x-y)(y-z)=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 17:22:06
实数x,y,z成等差,(z-x)^2-4(x-y)(y-z)=0
x,y,z为实数 且(y-z)^2+(x-y)^2+(z-x)^2=(y+z-2x)^2+(x+z-2y)^2+(x+y

(y-z)^2+(z-x)^2+(x-y)^2=(x+y-2z)^2+(y+z-2x)^2+(z+x-2y)^2[(y-z)^2-(y+z-2x)^2]+[(z-x)^2-(x+z-2y)^2]+[(

已知 x,y,z都是正实数,且 x+y+z=xyz 证明 (y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1

1/x=p1/y=q1/z=rpq+qr+pr=1(y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1/y+1/z)^2为(pq+qr+pr)[r/p+r/q+q/r+q/p+p/r+p/q

(x+y-z)(x-y+z)=

[x+(z-y)][x-(z-y)]=x-(z-y)记得采纳啊

已知x,y,z为实数,满足x+2y-z=6x-y+2z=3

x+2y-z=6①x-y+2z=3②,①×2+②,得x+y=5,则y=5-x③,①+2×②,得x+z=4,则z=4-x④,把③④代入x2+y2+z2得,x2+(5-x)2+(4-x)2=3x2-18x

已知实数x,y,z,满足那么x+y=6,z^2=xy-9,求(x+y)^z

实数x,y,z,满足那么x+y=6,z^2=xy-9,∴xy=z^+9,(x-y)^=(x+y)^-4xy=-4z^>=0,∴z=0,(x+y)^z=6^0=1.

若实数x、y、z满足2|x−y|+2y+z+z

根据题意,2|x−y|+2y+z+z2−z+14=0,整理后:2|x−y|+2y+z+(z−12)2=0,则x−y=02y+z=0z−12=0,解得x=y=−14,z=12,∴x+y+z=(-14)+

1.已知实数x,y,z在数轴上对应的点如图所示,化简:|x-y|-|y+z|+|x+z|+|x-z|/x-z.

1原式=y-x-y-z+x+z+(z-x)/x-z=-1第二题,我不大清楚是2/3根号3-a,还是2/3根号(3-a),即a在根号里

已知实数x,y,z在数轴上的对应点如图所示,试化简:|x-y|-|y+z|+|x+z|+|x-z|/x-z.

-----x---负2--负1---y--0----1----z---2-------|x-y|-|y+z|+|x+z|+|x-z|/x-z=(y-x)-(y+z)+[-(x+z)]+(z-x)/(x

非零实数x,y,z成等差数列,x+1,y,z与x,y,x+z都成等比数列,则y等于

x+z=2y①(x+1)z=y²②x(x+z)=y²③由②-③式可得z=x²把①式代入③式得y=2x把z=x²,y=2x代入上式方程可得x=3或0(由题意可知此

x,y,z为正实数 x/(2x+y+z)+y/(x+2y+z)+z/(x+y+2z)

x/(2x+y+z)=[3*(2x+y+z)-(x+2y+z)-(x+y+2z)-]/(4(2x+y+z))y/(x+2y+z)=[3*(x+y+2z)-(2x+y+z)-(x+y+2z)]/(4(x

x,y,z为实数且(y-z)平方+(x-y)平方+(z-x)平方=(y+z-2x)平方+(z+x-2y)平方+(x+y-

设a=x-y,b=y-z,-a-b=z-x(y-z)平方+(x-y)平方+(z-x)平方=(y+z-2x)平方+(z+x-2y)平方+(x+y-2z)平方b^2+a^2+(-a-b)^2=(-a-b-

已知实数x、y、z在数轴上的对应点如图所示,试化简|x-y|-|y+z|+|x+z|+x-z分之|x-z|

将四个绝对值的直线画在xy坐标系内,然后在独立的最小区域内讨论,就能够去掉每个绝对值这就是所谓的数形结合解题,很重要的方法

已知x,y,z为非零实数,且满足x+y-z/z=y+z-x/x=z+x-y/y 求x+y+z/z的值

x+y-z/z=y+z-x/x=z+x-y/y,应用等比定理,得(x+y-z+y+z-x+z+x-y)/(x+y+z)=(x+y-z)/z,所以(x+y+z)/(x+y+z)=(x+y-z)/z,即1

已知实数x,y,z满足x/(y+z)+y/(z+x)+z/(x+y)=1,求x2/(y+z)+y2/(z+x)+z2/(

等于0.x/(y+z)=1-[y/(z+x)+z/(x+y)]y/(z+x)=1-[x/(y+z)+z/(x+y)]z/(x+y)=1-[x/(y+z)+y/(z+x)]x2/(y+z)+y2/(z+

设x,y,z是实数,3x,4y,5z成等比数列,且x分之1,y分之1,z分之1成等差数列,求z分之x加x分之z的值

x/z+z/x(4y)^2=3x*5z2/y=1/x+1/zy=2xz/(x+z)(4y)^2=[8xz/(x+z)]^2=15xz64xz=15(x+z)^2,除以z^264x/z=15(x/z+1

设X,Y,Z为实数,2X,3Y,4Z成等比数列,且1/X,1/Y,1/Z成等差数列,则X/Z+Z/X的值是

因为2x,3y,4z成等比数列,那么2x*4z=(3y)^2,8xz=9y^2;因为1/x,1/y,1/z成等差数列,那么(1/x)+(1/z)=2/y,(x+z)/xz=2/y;两式左右两边分别相乘

已知三个实数x,y,z满足条件(z-x)^2-4(x-y)(y-z)=0,求证:x,y,z成等差数列

令a=x-yb=y-z则z-x=-(a+b)所以原条件即为(a+b)^2-4ab=0(a-b)^2=0所以a=b所以x-y=y-z这说明x,y,z是等差数列

已知三个实数x,y,z满足(z-x)平方-4(x-y)(y-z)=0.求证x,y,z成等差数列

(z-x)²-4(x-y)(y-z)=0.z²+x²-2xz-4(xy-xz-y²+yz)=0z²+x²+2xz-4xy+4y²-