定积分∫3 0根号9-x²dx的值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:17:37
∫[1,√2]x/√(4-x^2)dx=-1/2∫[1,√2]1/√(4-x^2)d(4-x^2)=-√(4-x^2)[1,√2]=√3-√2
用定积分几何意义求被积函数为y=√(9-x²),化成圆的方程y²=9-x²即x²+y²=(3)²所以此定积分其表示的曲线是圆心在原点,半径为
求定积分要有上下限的,否则是求不定积分.对于x/(1+√x)可令y=√x,y²=x,2ydy=dx∫x/(1+√x)dx=2∫y³dy/(1+y)而y³dy/(1+y)=
∫[0,a]√(a^2-x^2)dx=[x/2*√(a^2-x^2)+a^2/2*arcsinx/a][0,a]=πa^2/4∫[0,2]x/√(1+x^2)dx=1/2∫[0,2]1/√(1+x^2
令x=sectdx=sinx/(cosx)^2dt(x^2-1)=(sect)^2-1=(tanx)^2∫dx/x(根号x^2-1)=∫[sinx/(cosx)^2dt]/(sect*tant)=∫d
我也是大一的,你说的应该是∫dx/(1+根号x)吧,你令根号x=t,然后用分部积分法做
令6次根号(x+1)=tx=t^6-1dx=6t^5dtx=0,t=1;x=2,t=6次根号(3)则根号(x+1)=t³,三次根号(x+1)=t²所以原式=∫(1,6次根号3)6t
此定积分的几何意义就是上半圆周y=√(9-x^2)与x轴围成的半圆的面积,所以结果是1/2×π×3^3=9π/2
∫(2,3)(根号x+1/根号x)^2dx=∫(2,3)(x+1/x+2)dx=(x^2/2+lnx+2x)[2,3]=9/2+ln(3/2)
下列积分积分限均为0到1,不好打就省略了.=∫(a-2√ax+x)dx=a^2-2√a∫√xdx+∫xdx=a^2-√a*2/3*x^3/2(x=0x=1)+x^2/2(x=0x=1)=a^2-4/3
y=√[9-(x-3)²](x-3)²+y²=3²圆心(3,0),半径3由0到6,正好围绕一个半圆所以∫(0→6)√[9-(x-3)²]dx=1/2·
这是具体解题过程,
∫x/(1+√x)dxlet√x=(tany)^2[1/(2√x)]dx=2tany(secy)^2dydx=4(tany)^3(secy)^2dy∫x/(1+√x)dx=∫[(tany)^4/(se
∫(x^2+√x)dx=(1/3)x^3+2x√x/3+C
原式=∫(4,1)(x^3/2-x)dx=2/5x^5/2-1/2x^2│(4,1)=(2/5*32-1/2*16)-(2/5-1/2)=64/5-8-2/5+1/2=4.9【数学辅导团】为您解答,如
y=√9-x^2为圆x^2+y^2=9的上半圆,根据定积分几何意义其值∫(3→-3)y(x)dx为上半圆面积所以积分值为9pi(pi=3.1415926.)
/>令t=x∧(1/6),则x=t∧6,dx=6t∧5dt∴原式=∫1/(t²+t³)*6t∧5dt=6∫(t∧5)/(t²+t³)dt=6∫(t∧5)/t
解答图片已经传上,正在审核,请稍等.