定义法证f(x)=x3 x在R上增

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:28:09
定义法证f(x)=x3 x在R上增
已知定义在R上的函数y=f(x)满足f(x)=-f(x+1).证:函数y=f(x)为周期函数.

证明:因为f(x)=-f(x+1)所以f(x-1)=-f(x)即f(x)=-f(x-1)因为f(x)=-f(x+1),所以-f(x+1)=-f(x-1)即f(x+1)=f(x-1)令x=x+1即f(x

已知定义在R上的奇函数f(x+3)=-f(x),

f(3)=-f(0)f(0)=0f(3+3)=-f(3)-f(3)=f(0)=0f(6)=0

f(x)定义在R上 对任意x.y属于R 都有f(x+y)=f(x)+f(y)判断f(x)的奇偶性

f(x+x)=f(x)+f(x)f(2x)=2f(x)f(0)=2f(0)=0f(x)+f(-x)=f(0)=0f(x)=-f(-x)奇函数

利用定义法判定函数f(x)=x+√(X^2+1) 在R上的单调性.

【注:(1)易知,a²+1>a²≥0.∴√(a²+1)>|a|≥-a.即√(a²+1)>a.同理,√(b²+1)>-b.两式相加得√(a²+

定义在R上的函数f(x)满足f (x + y) = f (x) + f ( y )(x,y∈R),当x>0时,f (x)

设x10,所以f(x2-x1)>0f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)所以f(x1)-f(x2)=-f(x2-x1)

已知f(x)是定义在R+上的增函数,且f(x/y)=f(x)-f(y)

(1)令x=y=1,则f(1)=f(1)-f(1)=0令x=1,则且f(1/y)=f(1)-f(y)=-f(y)=>f(1/y)=-f(y)则f(xy)=f(x/(1/y))=f(x)-f(1/y)=

函数f(2x)+f(2y)=2f(x+y)f(x-y),定义在R上

f(0)+f(0)=2f(0)f(0)2f(0)=2f(0)^2f(0)=0,f(0)=1f(x)+f(-x)=2f(0)f(x)f(-x)+f(x)=2f(0)f(-x)2f(0)f(x)=2f(0

f(x)是定义在R上函数,x属于R,f(x)=f(x+1)+f(x-1)恒成立.证fx是周期函数.若f(3)=2.求f(

f(x+1)=f(x)-f(x-1)那么f(x)=f(x-1)-f(x-2)所以f(x+1)=-f(x-2)所以f(x+1)=-f(x-2)=f(x-5)f(x+1)=f(x-5)f(x)是周期函数,

定义在R上的奇函数f(x),当x

题中条件为x*f(x)这样一个函数的导函数,且奇函数乘以奇函数为偶函数,因此先减后增,a>c

F(x)=f(x)+f(-x),定义在R上的函数.

题目感觉表达不怎么清晰啊按我的理解来做我觉得是0到0.5啊新函数是不是F(X)按向量(1,0)方向平移得到新函数那么只要在原来的区间加上1啊❀求递减才对的F(x)=f(x)+f(-x),

已知定义在R上的奇函数f(x)满足f(x+y)=--f(x)求f(6)

那个满足f(x+y)=-f(x)没别的条件?x和y可以是任意值?条件和描述真的齐全吗?如果题目真的就这样,我的想法是依题意,f(6-6)=-f(6)又f(x)为奇函数,所以f(6-6)=f(0)=0所

利用定义法证明f(x)=-x^3+2在R上为减函数

函数f(x)=x³+2的定义域为(﹢∞,﹣∞).在定义域内任取两点x1,x2,且x1<x2,则f(x1)-f(x2)=(x1)³+2-[(x2)³-2]=(x1)

定义在R上的奇函数f(x)满足f(x+2)=f(x)-1,则f(1)等于?

奇函数即是f(-x)=-f(x)f(x+2)=f(x)-1令X=-1即f(-1+2)=f(-1)-1===>f(1)=f(-1)-1===>f(1)=-f(1)-1==>f(1)=-0.5

1、设f(x)是定义在R上的一个函数,则函数F(x)=f(x)-f(-x)在R上一定是( )

1.F(0)=0所以过原点F(-x)=-F(x)所以为奇函数2.M>=-1N>=9所以M∩N=(9,+无穷)

定义在R上的函数满足f(x)-f(x-5)=0,当-1

以5为周期-1到4一个周期内x=0,2时f(X)=0,一个周期2个0点[-1,2014]与[0,2013]0点数一样-1+n*5~4+n*5在-1~2014共403个周期2*n=806

定义在R上的函数满足f(-x)=1/f(x)>0 ,

定义在R上的函数满足f(-x)=1/f(x)>0,说明f(x)>0,X∈R设X1,X2∈[-b,-a],X1-X2,因为g(x)=f(x)+c(c为常数),在[a,b]上是单调递增函数,g(-x1)=

定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈(3,4)

你这样试试:根据函数周期性奇偶性能确定函数的图象,应该是一段呈波浪状的折线图,图画出后将各输入值代入比较函数值大小,即点高低即可.

定义在R上的奇函数f(x)满足f(x+2011)=f(x),则f(2011

f(x)是奇函数所以f(0)=0f(x+2011)=f(x)令x=0所以f(2011)=f(0)=0

f(x)是定义在R上的奇函数,又在定义f(x+2)=f(x)恒成立,那么f(4)+f(3)=?

f(x)是定义在R上的奇函数,又f(x+2)=f(x)则f(x)+f(-x)=0,f(0)=0,f(1)=f(1-2)=f(-1)f(1)+f(-1)=0,所以f(1)=0f(4)=f(2)=f(0)