如附图所示 一个半径为r的均匀带电半圆环,电荷线密度为,求环心处O点的场强
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:50:10
用静电平衡简单.用高斯定理也简单.在球心处做一个高斯球面,因为电场球对称,而且面内EdS积分是零,所以各处场强是零.当高斯球面的半径无限小时,场强仍是零,由于场强是连续的,所以,球心处场强为零.再问:
E(r)【矢量】=0(rR),
将半圆环无限微元,每一微元电荷量为Q/n,每一微元到环心距离为R由场强公式:E=k(q/(R×R))×cosθθ为该微元与环心连线和垂直直径方向的连线,之后对每一个微元的场强求和既可,需要用到积分公式
1.铁球的重力势能减少了:mgh对于水来说,由于铁球的浸入,水面要升高,设水面升高了h',显然h'=V/s(V是铁球的体积,也是它排开水的体积)相当于把与铁球同体积的水(也是球形)从铁球与杯底接触位置
F=GmM/r^2由此公式可以得出g=GM/R^2轨道半径r处,g’=GM/r^2已知卫星周期为T由圆周运动F=mV²/r=4mπ²r/T²得g’=GM/r^2=4π&s
半径为R的均匀带电球,其外部电场可视为位于球心的点电荷的电场,类比于静电平衡时,均匀带电的金属球,可知:球外部空间:E=kQ/r^2,φ=kQ/r(r≥R)球内部空间:E=0,φ=kQ/R
设想将圆环等分为n个小段,当n相当大时,每一小段都可以看做点电荷,其所带电荷量为:q=Qn由点电荷场强公式可求得每一点电荷在P处的场强为:E=kQnr2=kQn(R2+L2)由对称性可知,各小段带电环
弱弱得问一下、你学过电场的高斯定理吗?学过的话就好办、没学过的话还要解释一下高斯定理的证明再问:高斯定理正在学习中,所以就遇到了这个问题再答:哦哦、、我刚刚仔细想了想、这题还真不好办、是求圆环所在明面
算出挖去小圆的转动惯量直接用差量法或先找重心再用积分应该不难
因为环上的每一个点电荷带电量都相同,而且在OP=L处所形成的相当于一个等势面,所以半径是相等的,因此说场强的大小是相同的.
受力如图,30度由几何分析得到.因此FN=G*tan30=(根号3/3)*G F=G/cos30=(2根号3/3)*G
设重心离此半圆弧的圆心的距离为x,将此圆弧饶两端点所在直线旋转一周形成一球面,则此球面面积S=圆弧长l*重心移动距离r=πR*2πx=4πR^2,解得x=2R/π.故半圆弧的中心位置在其对称轴上圆心与
解题思路:首先对各力做功情况作出分析,而后根据动能定理分析出:当合力所做正功最大时,珠子获得的动能最大。解题过程:解析:珠子在运动过程中,受重力、电场力和圆环的弹力作用,其中重力、电场力做功,圆环弹力
根据对称性,完整的圆环对圆心的电荷产生的电场力为0.把圆环分为两部分,带缺口圆环和长度为L的部分对圆心的电荷产生的电场力互相抵消,即大小相等.单位长度上电荷量为Q2=Q1/(2πR-L)——为书写方便
圆环有对称性,将圆环分成无限多小段,同一直经上两小段场强抵消,故和为0
这个圆板被挖去小圆之后,是可以分成两个重心部分,即与挖去部分相对称的小圆和其余部分,这样形成两个重心,A为整圆的1/2,B为整圆的1/4,两重心的距离是R/2,设两者合一的重心离大圆圆心为x,(1/2
原来的圆盘的转动惯量是I=MR^2/2现在考虑挖去的这个小圆盘的转动惯量.它质量是M/4,半径是R/2,根据转动惯量的平移订立,它对于转轴的转动惯量=它对它圆心的转动惯量+它质心对于转轴的转动惯量所以
为什么电荷量为2e,质量为4m?这是已知条件给的.应该是a粒子.(1)匀强电场E=U/d(2)a=F/4m=2qE/4m=qE/2m=qU/2dm(3)从正极板边缘射入,到达负极板时恰好落在极板中心.