如果级数an,bn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:07:39
an+an+1=2*bnbn+bn+1=2*an+12*bn+2*bn+1=4*an+1an+an+1+an+1+an+2=4*an+1an+an+2=2*an+1等差an=2n-1bn=2n
用比较判别法证明.经济数学团队帮你解答.请及时评价.
(an+bn)^2
算术几何均值不等式:|an|/n
设M为{bn}的上界则|bn|
如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.
这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散
∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛
证明:因为an/bn的极限等于a,所以bn/an的极限等于1/a(因为a不等于0)所以数列{bn/an}有界,即设|bn/an|0,由于an的极限等于0所以对于上述ε,存在N,当n>N时,恒有|an-
不一定,只有当级数an,bn都是正项级数级数时柯西乘积才收敛如果an=[(-1)^n]/√n,bn=2*[(-1)^n]/√nan*bn=2/n,是发散的再问:∑an=∑[(-1)^n]/√n,∑bn
这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,
令an-2n+11>0,解得:n
由已知得bn=[an+a(n+1)]/2a(n+1)²=bn×b(n+1)=[an+a(n+1)][a(n+1)+a(n+2)]/4[an+a(n+1)][a(n+1)+a(n+2)]=4a
d(n)=2^n+n,p(1)=d(1)=2^1+1=3,p(n+1)=d(n+1)+d(n)=2^(n+1)+(n+1)+2^n+n=3*2^n+2n+1,L(2n-1)=d(2n-1)=2^(2n
由于有0
不一定发散再问:能具体解释下吗?不明白啊……求教再答:比如an=sin(nπ)bn=cos(nπ)然后不就有结论了吗?再问:sin(nπ)不是都等于0吗?那样an不就收敛了……sin(nπ)平方加上c
再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再
第一题有不错的解答了...主要写了你补充的题