如果向量组a1 a2 ar线性无关,向量组a1-a2,a2-a3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 08:11:51
这道题显然不对啊设β=-α1,则向量β是向量组α1,α2,...,αn的线性组合,α1,α2,...,αn线性无关但由于β+α1=0,所以此时必有β+α1,α2,...,αn线性相关,与结论矛盾.设t
一个向量是线性相关的充分必要条件是这个向量是零向量向量组0线性相关,无极大无关组向量组α≠0线性无关,极大无关组是其本身
一个向量组的极大线性无关组可以有多个,但是那个向量组里的向量个数是唯一确定的.也就是说,如果2向量组,一个4个,一个3个,那肯定有一个不是
(b1,b2,b3)=(a1,a2,a3)KK=101220033因为|K|=12≠0所以K可逆所以r(b1,b2,b3)=r(a1,a2,a3)=3所以b1,b2,b3线性无关.怎么让证线性相关呢?
提供两种证法如图,第二种方法要用到秩的性质.经济数学团队帮你解答,请及时采纳.
反证法,若线形相关,则存在一组不全为0的系数k1、k2、k3:k1(α+β)+k2(β+γ)+k3(γ+α)=0整理得:(k1+k3)α+(k1+k2)β+(k2+k3)γ=0由α、β、γ线性无关,知
A=a1b1T+.+arbrT=(a1,a2,...ar)(b1T,b2T,...brT)T,【写成行向量和列向量乘积的形式】记:C=(a1,a2,...ar),B=(b1T,b2T,...brT)T
k1*a1+k2(a1+a2)+k3(a1+a2+a3)+...+ks(a1+a2+...+as)=(k1+k2+..+ks)a1+(k2+k3+...+ks)a2+...+ks*as=0因为a1,a
可参考:http://zhidao.baidu.com/question/280278707.html
看向量组构成的矩阵是不是满秩的,满秩说明线性无关,不满秩则线性相关利用初等变换求矩阵的秩.1.(-121)(101)(314)-->(011)秩为2(011/20)秩为3,线性无关(002)(002)
反证法若相关,则存在x,y,z不全为0使得x(a1+a2)+y(a2+a3)+z(a3+a1)=0此即(x+y)a2+(x+z)a1+(y+z)a3=0若x,y,z不全为0,则x+y,y+z,x+z不
选C对于A:(A1+2A2)+(A3-A1)=2A2+A3,线性相关对于B(A1-2A2)+2(A2-A3)=-(2A3-A1),线性相关对于D,(A1-A2)+(A2+2A3)=2A3+A1,线性相
令x(1,1,3,1)+y(3,-1,2,4)+z(2,2,7,-1)=(0,0,0,0),有x+3y+2z=0且x-y+2z=0且3x+2y+7z=0且x+4y-z=0,这个方程组有且只有零解,即x
假设给出了a1...ar个向量,向量组A=(a1,a2,...ar),要求判断线性相关性(1)那么根绝定义来判断的话就是看方程k1a1+k2a2...+krar=0的解集的数量.加入只有k1=k2=.
没有这种说法,如a1=0时,它和任何向量都线性相关
证明,用反证法,设有向量组a1,a2,a3,a4,…,an线性无关,同时,设其中向量a1,a2,a3,a4,…,aj线性相关,j
显然不能,非0向量a,向量组{a}和向量组{a,0}显然等价,但是前者线性无关,后者不是再问:如果线性无关的那个向量组是单位向量组呢,可以吗?再答:单位向量e,{e},{e,e}就不满足再问:好的,谢
这些向量相加恒等于0,与a1,a2,...,am是否线性无关没有关系.再问:可否可以给我个详细答案呢,写完拍张图片在上面,谢谢。。。再答:a1-a2+a2-a3+....am-1-am+am-al=0
你将维数与秩弄混了.只有当向量组线性无关的时候,向量个数才和秩相等.我们考虑n维n个向量组成的一个向量组.如果线性无关,那么秩为n.但是如果这n个向量都是n-1维的,我们不妨直接去掉所有向量的最后一个
不需要,如果确定是r,2是不需要验证的,可以保证成立