如果函数f(z)=u iv在区域D内解析,并满足下列条件之一,则f(z)是常数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:33:40
因为f(z)=|z|当趋于0-时f(z)=|-1;当趋于0+时f(z)=|1;右极限不等于左极限.所以f(z)=|z|在z=0处不可导而在处0以外的其他地方都可导且解析.这判断这种是有规律的,你要好好
e^z=e^(x+iy)=e^x(cosy+isiny),设实部u=e^xcosy,虚部v=e^xsiny∂u/∂x=e^xcosy,∂u/∂y=-e^
利用Cauchy-Riemann方程即可.由题意有au/ax=av/ay,au/aya=-av/ax,同时又有au/ax+2av/ax=0,au/ay+2av/ay=0,四个方程联立解得au/ax=a
f(z)在D内解析,满足柯西-黎曼方程:又满足8u+9v=2012,对该式求偏导:将柯西-黎曼方程代入可得:所以f(z)在D内必为一常数
用泰勒展开式做.再问:不会吧?这个题怎么用泰勒展开式啊?我只知道得让四个偏导为零,但我只能得到四个偏导在z▫为零。再答:在z0处泰勒展开。解析函数的泰勒展开。
复变函数f(z)=u(x,y)+iv(x,y)连续的充要条件是两个二元实函数u(x,y),v(x,y)都连续,本题中f(z)=x-iy,这里u(x,y)=x,v(x,y)=-y在xoy平面上处处连续,
第一步,找|x|+|y|
f(x,y)=x^2-y^2+C,f(1,1)=2=>C=2f(x,y)=x^2-y^2+2,区域D={(x,y)|x^2+y^2/4≤1}上,(1)在区域D的内部,由2x=0,2y=0得:驻点(0,
设f(z)=u(x,y)+iv(x,y).若|f(z)|=0,则推出:f(z)=0.结论正确.若|f(z)|≠0,而|f(z)|在D内恒为常数,表示:{u(x,y)}^2+{v(x,y)^2}=常数≠
令v(x,y)=0不就行了么、、、或者u(x,y)在每处的偏导数都存在
因为f(x,y)在D上连续,所以对任意一点(x1,y1)∈D,存在(x0,y0)的一个邻域V0,使对任意(x0',y0')∈V0,有|f(x0',y0')-f(x0,y0)|
从复变函数导数的定义可知:若f(z)在a可导,则对任意常数c,c·f(z)也在a可导.因此第一问显然.再注意到i·f(z)=-v+i·u,因此u是-v的共轭调和函数,从而-u是v的共轭调和函数.
第一个不定比如f(z)=z在全平面是解析的.但f(z共轭)=z共轭是不解析第二个是可以的.证明方法很多,可以直接用导数定义来验证.做不出来HI我.
f(x)=f(1)+f'(1)(x-1)+(f''(1)(x-1)^2)/2!+……+(f^n(1)(x-1)^n)/n!x=1/Z带进去再问:求解微分方程..y''(t)+3y'(t)+y(t)=3
哦,转换一下用柱面坐标即可:(x^2+y^2)^1/2
设f(z)=u+iv,f(z)的共轭=u-iv,因为解析,所以满足柯西黎曼方程,可以解出来u对x,y的偏导,v对x,y的偏导均为0,则f(z)为常数望采纳~
f(z)是整函数,所以无穷远点是整函数的孤立奇点.下证z=无穷是f(z)的可去奇点.否则,若为n次多项式或超越整函数,则可写成Σαk(z)^k由代数基本定理,任何n次代数方程至少有一根.则至少存在z0