如果两个级数的平方都收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 16:54:19
如果两个级数的平方都收敛
如果级数Un收敛,1/Un的敛散性?

(级数收敛则通项必趋于零)Un收敛则Un趋于0,则1/Un不可能趋于0(否则1=Un*(1/Un)趋于0,矛盾),所以1/Un一定发散

为什么n分之一的级数是发散n平方分之一的级数是收敛

给你一个好证明!我们计算一下取平面上的点使得两个坐标互素的可能性.记为p,那么坐标最大公约数是2的可能性是4p.同理有9p.加起来,用全概率是1,知道1/p=n平方分之一的级数和.因为p不为0所以收敛

级数an的平方收敛,an>0,求证级数an除以n收敛

这个题很经典的,用基本不等式就可以做.省去下标∑an/n=∑(1/n)*a_n

若级数∑an^2和∑bn^2都收敛,求证:∑an的绝对值/n收敛

用比较判别法证明.经济数学团队帮你解答.请及时评价.

设两个级数都收敛,证明两个级数和的平方也收敛

an,bn收敛知an->0,bn->0an再问:但这不是正项级数再答:和正项级数有什么关系?你哪没看懂再问:an的平方怎么收敛的再答:老师给了个反例反例a_n=b_n=(-1)^n/n^0.1,刚才默

条件收敛级数与绝对收敛级数的一个问题

①前一个级数的绝对值级数【1/(n*n)】是收敛的,故前一个级数绝对收敛②后一个级数本身是收敛的,但是它的绝对值级数【1/n】是发散的,故后一个级数是条件收敛①②都是根据条件收敛、绝对收敛的定义得到的

关于级数收敛的充要条件

CA是必要条件B只能针对正项级数D是充分条件

如果一个数列的级数收敛,那么这个数列一个无限的子列是否收敛,又如何证明呢?

这个数列的无限子数列也收敛,而且收敛到母数列的极限值,证明很简单.比如数列a1,a2,a3...an...收敛到A,它的子数列无非就是在这个数列中抽值,比如子数列是a2,a6,a11...am...,

级数的绝对收敛

答案a>1由于a>0,故1+a^n>0.加绝对值无所谓①01通项极限为0.用根值判别法,对通项1/(1+a^n)开n次方,结果是1/a,满足收敛条件,收敛半径是a.故答案就是a>1这是我自己的方法,这

一个级数收敛的问题如果Sigma(Un)和Sigma(Vn)都发散,那么能否得出:Sigma(Min(Un,Vn))收敛

不能.考虑数列u(n)=1,v(n)=1,符合要求,但sigma(min(un,vn))显然发散.考虑数列u(n)为0,-1,0,-1,...,而数列v(n)为-1,0,-1,0,...,符合要求,但

如何证明两个收敛级数相乘必然收敛?

若为两个正项级数:设两个收敛级数S1,S2.因为收敛必存在N,使得n>N时,S1n

如何判定级数的收敛

答案是C级数收敛的必要条件是加项是无穷小量.B的加项极限是1,D的加项极限是e,都不是无穷小量,所以B和D是发散的.以(1/n^p)为加项的级数稳定为p-级数,这个级数收敛的充分必要条件是p>1,而A

判定下列级数的敛散性,如果收敛,是绝对收敛,还是条件收敛

因为\cosna/n³\≤\1/n³\因为Σ1/n³收敛所以Σ\cosna/n³\收敛从而原级数绝对收敛.

级数收敛

一.易见a_{n+1}/S_n>1/x在区间[S_n,S_{n+1}]上的积分,两边求和,就得到左边的级数大于等于1/x在a_1到正无穷上的积分,当然是发散的.二.用Dirichlet判别法.

3345判断级数是否收敛?如果收敛,是绝对收敛还是条件收敛?

此级数是交错级数,考虑到通项中有指数是n的幂,开n次幂的极限是无穷大,所以为发散级数

两个级数都发散,或都收敛或一个发散一个收敛,他们的和,积,绝对值的和之类的是什么关系,发散还是收敛

两个函数有极限当然他们的和差都有极限 并且就是他们极限的和差两个级数发散的话和、积是发散的绝对值的和也是发散的可以看级数收敛的必要条件.两个级数一个收敛一个发散的话和、积、绝对值的和爷发散&

两个条件收敛的级数相乘所得的级数的收敛性是什么?

如果你是指一般项相乘,则可能收敛,也可能不收敛.无法判定.收敛的例子an=bn=(-1)^n/n不收敛的例子an=bn=(-1)^n/根号n

绝对收敛和条件收敛我想知道我在求某级数是为绝对收敛还是条件收敛的时候,是先求绝对收敛么?如果它发散,再看原级数是否收敛.

判断一个级数的收敛性时首先看它是否绝对收敛(特别是交错级数),若绝对收敛则原级数收敛,否则…你的判断顺利正确.判断绝对收敛的方法:将原级数加上绝对值,再根据其级数特点用相应的方法(如比较法,比值法,根