如果两个级数∞∑=1an^2与∞∑n=1bn^2都收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 16:32:48
由于级数∑an收敛,所以an->0.于是存在充分大的N,当n>N时,有anN,an^2由于级数收敛只要考虑尾项,而∑an^2的尾项已经被∑an控制住了,所以后者收敛推出前者收敛
由于lim((1+n)/(1+n²))/(1/n)=lim(n²+n)/(1+n²)=1所以此级数和1/n有相同敛散性1/n发散,所以此级数发散
先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛
未必.例如 an=[(-1)^n]/√n,则交错级数∑an收敛,但级数 ∑an^2=Σ(1/n)是调和级数,是发散的.
若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因
算术几何均值不等式:|an|/n
∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛
证明正项级数收敛,只需证明其部分和数列有上界显然,正项级数∑(n从1到∞)an收敛,则Sn=a1+a2+...+an有界从而Tn=a1^2+a2^2+.+an^2
n充分大时有|an|1/2从而|1/1+an|
证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛
级数∑(0到无穷)an(x-1)∧n的收敛半径是1,则级数在x=3发散再问:怎么解的?能给个过程吗?再答:没有过程:收敛半径是1|x-1|
an如果不趋于0,那么2^an-1也不趋0,反之一样,他们同时发散现在设an趋于0当x趋于0时,由于lim(2^x-1)/x=ln2故lim(2^an-1)/an=ln2>0故∑(2^an-1)与∑a
收敛因为sin((n^2+an)*π)=0,所以原式等价于∞∞∑sin(b*π)/n
harold58对于第一个问题的回答我觉得有点问题,根据菲赫金哥尔茨《微积分学教程》第二卷218页关于级数的比较定理来看,对于两个级数,an,bn,如果,至少从某处开始(比方说n>N),不等式an再问
由于有0
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
再答:抱歉,我写的公式有点错误,1)xn-xm=这个多写了一项an/rn;2)应该是:取varepsilon=rm/2而不是1-rm/2。再问:嗯嗯注意到了还有公式二三行第二项分母应该是m+1,第三行
分情况一,正项级数则收敛,简单证明下设∑An=k则an必然有界an中m项和为∑bm
按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^