如果两个级数an²与bn²都收敛,试证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 17:10:27
an,(bn)^2,a(n+1)成等差数列2(bn)^2=an+a(n+1)--①由(bn)^2,a(n+1),(b(n+1))^2成等比数列(a(n+1))^2=[bnb(n+1)]^2∴a(n+1
上下同除3^(n-1)分子=16*(2/3)^(n-1)-14分母=28-24*(2/3)^(n-1)注意(2/3)^(n-1)->0所以极限等于-14/28=-1/2
an+an+1=2*bnbn+bn+1=2*an+12*bn+2*bn+1=4*an+1an+an+1+an+1+an+2=4*an+1an+an+2=2*an+1等差an=2n-1bn=2n
用比较判别法证明.经济数学团队帮你解答.请及时评价.
(an+bn)^2
算术几何均值不等式:|an|/n
如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.
∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛
题目都说是猜了所以先找规律a1=1b1=2an,bn,an+1成等比数列a2=4bn,an+1,bn+1成等差数列b2=6依次得到a3=9b3=12a4=16b4=20...可以看出an=n^2bn=
这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,
数列{An}及数列{Bn}都为等差数列,所以2an=a(n+1)+a(n-1)2bn=b(n+1)+b(n-1)cn=pan+qbn所以2cn=2pan+2qbn=pa(n+1)+pa(n-1)+qb
由已知得bn=[an+a(n+1)]/2a(n+1)²=bn×b(n+1)=[an+a(n+1)][a(n+1)+a(n+2)]/4[an+a(n+1)][a(n+1)+a(n+2)]=4a
(1)Sn-S(n-1)=5Sn+1所以Sn+1/5=-1/4[S(n-1)+1/5]Sn=(-1/4)^n-1/5an=(-1/4)^n由bn=(4+an)/(1-an),可得bn=[4^(n+1)
1.证明:因为bn,a(n+1),b(n+1)成等比数列,所以[a(n+1)]²=bnxb(n+1)(n∈N*)a(n+1)=√[bnxb(n+1)]所以an=√[bnxb(n-1)](n≥
这个不一定的:比如Bn=-An,显然{An+Bn}收敛到0比如An={1,0,1,0,……},Bn={0,1,0,1……}显然{AnBn}收敛到0
由于有0
不一定发散再问:能具体解释下吗?不明白啊……求教再答:比如an=sin(nπ)bn=cos(nπ)然后不就有结论了吗?再问:sin(nπ)不是都等于0吗?那样an不就收敛了……sin(nπ)平方加上c
这个应该很容易找吧,把正弦那部分想办法搞定了就好了.1.令an=1/(2πn)则f(an)=2πnsin(2πn)=0{f(an)}为趋于无穷小的无穷数列2.令bn=1/(2πn+π/2)则f(bn)
再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再
第一题有不错的解答了...主要写了你补充的题