如果n阶矩阵A满足Am=O,m是正整数,证明:E-A可逆,且
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:05:58
2题的解法一样 根据要证明可逆的矩阵凑积=单位矩阵的多项式 2题过程如下图:
因为A^2=A=AI,所以A(A-I)=0所以A或A-I的行列式等于0A的行列式等于0说明特征值是0A-I的行列式等于0说明特征值是1
正确因为B可逆所以RA(B)=R(A)=m.知识点:若P,Q可逆,则R(PA)=R(AQ)=R(PAQ)=R(A)
经济数学团队为你解答.再问:证明A特征值全为零和证明下一步E+kA特征值为1有什么关系吗?再答:有关系。若a是A的特征值,则1+ka是E+kA的特征值。
设B=(a1,a2,a3,……),因为AB=O,所以Aa1=0,Aa2=0,……因为A列满秩,所以方程Aan=0仅有零解,即an=O,所以B=O用类似的方法可以证明第二个
A²-5A+6E=E(A-2E)(A-3E)=E所以A-2E可逆其逆矩阵为A-3E再问:(A-2E)(A-3E)=A²-5AE+6E^2。不等于A²-5A+6E=E再答:
A2-5A+5E=A2-5A+6E-E=(A-2E)(A-3E)-E=O(A-2E)(A-3E)=E矩阵A-2E可逆,其逆矩阵=A-3E
设λ是A的特征值,所以Aα=λα.α≠0是对应的特征向量.上式两边左乘上A,得到;(A^2)α=Aλα=λAα=(λ^2)α因为A^2=A,所以(A^2)α=Aα所以(λ^2)α=λα[(λ^2)-λ
正确因为B可逆所以RA(B)=R(A)=m.知识点:若P,Q可逆,则R(PA)=R(AQ)=R(PAQ)=R(A)再问:谢谢!!!
(1)r(A)=nAX=0X只有零解所以B就是零解组成的矩阵,即零矩阵(2)AB=AA(B-E)=0由(1)知道(B-I)=0B=I
1证明:若矩阵A^2=I,A不等于I,则A+I不可逆.证明:首先因为A与A可乘(条件中由A^2),所以A是方阵(不妨设为n阶).因为A^2=I,所以(A+I)(A-I)=O,因为A≠I,所以A-I≠O
因为A^m=O,即A为幂零矩阵,所以A的特征值只有0,从而对任意实数k,E+kA的特征值只能是1,|E+kA|等于其所有特征值的乘积,故不为0,所以E+kA为可逆矩阵.
当m>n时,r(A)≤n,仅有0解是r(A)=n当m再问:就是说不是看m或者n,看方程组和未知数的个数的比较再答:看系数矩阵的秩和未知量个数,也即矩阵的列数的比较。
设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-
利用公式E=E-A^m=(E-A)(E+A+A^2+A^3+……A^m-1)可得.
同楼上,认为Am表示A^m,也就是A的m次方,En表示n阶单位阵A^m=0则En-A^m=En,En+A^m=En因为En^m=En下面就是a^m-b^m和a^m+b^m的展开式了比如En-A^m=E
是m阶,与m,n大小无关,如果是ba则是n阶!线性代数上就有.
若η是齐次线性方程组Bx=0的解则Bη=0所以Cη=ABη=A0=0所以η也是齐次线性方程组Cx=0的解.反之,若η是Cx=0的解则有(AB)η=0所以A(Bη)=0由于r(A)=n,所以Ax=0只有
如果知道Laplace展开定理,直接对前m行展开即可如果知道行列式乘积定理,可以做分解[AB;0C]=[IB;0,C]*[A0;0;I]对[IB;0,C]按第一列展开并归纳,对[A0;0;I]按最后一