如图角MON=70,A,B分别在OM,ON,上移动

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:52:19
如图角MON=70,A,B分别在OM,ON,上移动
如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上

根据直角三角形斜边上的中线等于斜边的一半,取AB中点E时,OE=1/2AB=1(是定长)又∵ED=√2(也是定长)∴OD≤OE+DE,即最大值=OE+DE(三点共线)=1+√2

如图,∠MON=90o,在∠MON的内部有一个正方形AOCD,点A、C分别在射线OM、ON上,点B是ON上的任意一点,在

(1)△AOB≌△ADF(SAS)∴∠ADF=∠AOB=90°(2)过E作EG⊥FC交FC于G,同理可证△FGE≌△ADF,∴FG=AD=DC,FD=GE,∵FG=FD+DG,DC=DG+GC,∴FD

如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上 上运动,矩

如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=2,BC=1,∴OE=AE=12AB=1,DE=根号下AD2+AE2=根号

如图,OP平分∠MON,点A,B分别在OP,OM上,∠BOA=∠BAO,那么AB是否平行ON?

AB∥ON证明:∵OP平分∠MON∴∠MOP=∠NOP∵∠BOA=∠BAO∴∠BAO=∠NOP∴AB∥ON(内错角相等,两直线平行)

如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM,ON上,当点B在边ON上运动时,点A随之在边OM上运动,

同2012济南题.OD最小为AD的长,这不用解析.最大:在AB上取点E,做出一个三角形ODE,则OD小天OE+ED,而特殊点是E在AB中点,OE=AB一半=4,则勾股出DE=5,所以OD最大为9.

如图,在∠MON的边OM,ON上分别取OA=OB,过A作DA⊥OM于A,交ON于D,过B作EB⊥ON于B,交OM于E,设

Rt△OAC和Rt△OBC中,∵OA=OB,OC=OC∴Rt△OAC全等于Rt△OBC∴∠MOC=∠NOC即OC平分∠MON

如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形A

取AB中点E,在RTΔOAB中,OE=1/2AB=1,连接DE,DE=√(AD^2+AE^2)=√2,由ΔADE可知:OD≤OE+DE=1+√2,当O、E、D共线时,OD最大=1+√2.

如图,∠MON=90°,矩形ABCD的顶点A、B分别在OM、ON上,当B在边ON上运动时,A随之在边OM上运动,矩形AB

如上图,取AB中点E连接OE、DE,     OE是直角三角形AOB斜边上的中线,     &nbs

如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形A

如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=2,BC=1,∴OE=AE=12AB=1,DE=AD2+AE2=12+12

如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,AB=4,BC=1.当点B在边ON上运动时,点A随

如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=4,BC=1,∴OE=AE=12AB=2,DE=AD2+AE2=5,∴OD

如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形AB

如图,取AB的中点E,连接OD、OE、DE,∵∠MON=90°,AB=2∴OE=AE=12AB=1,∵BC=1,四边形ABCD是矩形,∴AD=BC=1,∴DE=AD2+AE2=12+12=2,根据三角

如图,∠MON=80°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置

∠APB=130°,不变证明:∵∠MON=80∴∠OAB+∠OBA=180-∠MON=180-80=100∵AC平分∠OAB,BD平分∠OBA∴∠OAC=∠OAB/2,∠OBD=∠OBA/2∵∠APB

:如图,∠MON=60°,点A、B分别在射线OM、ON上移动,

在BC反向延长线上取点DAC平分∠OAB,所以∠CAB=∠OAB/2,BD平分∠ABN,所以∠ABD=∠ABN/2∠ABN=180-∠OBA,因此∠ABD=90-∠OBA/2因为∠ABD为△ABC外角

已知如图角MON=90度,BE是角ABN平分线,BE的反向延长线与角OAB的平分线相交于点C,当点A.B分别在射线OM.

∵AC平分∠OAB∴∠BAC=∠OAB/2∵∠MON=90∴∠ABN=∠MON+∠OAB=90+∠OAB∵BE平分∠ABN∴∠ABE=∠ABN/2=(90+∠OAB)/2=45+∠OAB/2∵∠ABE

如图,∠MON=70°,点A、B分别在射线OM、ON上移动,BD是∠NBA的平分线,BD的反向延长线与∠BAO的平分线相

∠C的大小保持不变.理由:∵∠ABN=90°+∠OAB,AC平分∠OAB,BD平分∠ABN,∴∠ABD=1/2∠ABN=1/2(90°+∠OAB)=45°+∠OAB/2,即∠ABD=45°+∠CAB,

如图所示,∠MON=90°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P,问随着点A、B的位

∠APB的大小不变化.理由如下:∵△AOB的角平分线AC与BD交于点P,∴∠1=∠2,∠3=∠4,∴∠AOB=180°-∠1-∠2-∠3-∠4=180°-2(∠2+∠3),而∠APB=180°-∠2-

如图7-X-10,已知∠MON=90°,点A,B分别在射线OM,ON上移动,∠OAB的平分线与∠OBA

不论A、B两点怎样移动,∠ACB都等于45°∵∠MON=90°∴∠OAB+ ∠ABO=90°又∵AC是∠OAB的平分线,∴∠CAB=(1/2)∠OAB由图∠OBD=∠MON+∠OAB=90°+∠OAB

如图 如图,已知∠MON=90°,点A,B分别在射线OM,ON上移动,

∠C=∠DBC-∠BAC=1/2(∠DBO-∠BAO)=1/2(180°-∠OBA-∠BAO)=1/2(180°-90°)=45°所以大小不变再问:为什么是=1/2(∠DBO-∠BAO)再答:DC,A

已知∠MON=90°,点A,B分别在射线OM,ON上移动,∠OBD的平分线所在直线交于点C,试猜想:随着A、B点的移动,

缺少条件.少,BC平分∠OBD,如有答案如下:∠ACB=∠DBC-∠DAC∠BOA=∠DBO-∠DAO∠DBO=2∠DBC∠DAO=2∠DAC∠AOB=2∠ACB∠MON=90∠ACB=45再问:不少

已知,如图,∠MON=90°,点A,B分别在射线ON,OM上移动,

/>∠C的大小保持不变.理由:∵∠ABN=90°+∠OAB,AC平分∠OAB,BD平分∠ABN,∴∠ABD=12∠ABN=12(90°+∠OAB)=45°+12∠OAB,即∠ABD=45°+∠CAB,