如图角abc内接于圆0连结oa,oc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:49:33
(1)相切角OCD=角OCB+角BCD=1/2(角ACB)+角ACB)分别根据CA=CB,OC为角ACB的角平分线和内错角相等=90三角形内角和180(2)2倍的根号3
相切.连接OD,可以证明OD垂直于CD.所以相切.
(看楼1的看不懂,我的易看,写的多,只因我写的全,其实也很简单,第3问:连接AO并延长,交BC于F点(你画画)连接BO因为AB=AC所以AF是BC的垂直平分线(垂直平分线上的点,到线段两边相等)所以△
(1)CD与⊙O相切;证明:连接OC,∵CA=CB,∴AC^=CB^∴OC⊥AB,∵CD∥AB,∴OC⊥CD,∵OC是半径,∴CD与⊙O相切.(2)∵CA=CB,∠ACB=120°,∴∠DOC=60°
⊿ABD∽⊿BED⊿AEC∽⊿BED⊿AEC∽⊿ABD证明⊿AEC∽⊿BED证明如下:∵∠DAC与∠DBC为同弦所对的圆周角∴∠DAC=∠DBC同理∠BDA=∠BCA由∠DAC=∠DBC∠BED=∠A
(3OA+4OB)^2=9+16+24OA*OB=(-5OC)^2=25.则:OA*OB=0,OA垂直于OB.以O为原点,OA,OB为x,y轴建立平面直角坐标系,设C坐标为(u,v)3(1,0)+4(
3OA+4OB+5OC=0OC=-(3/5OA+4/5OB)OC^2=9/25OA^2+16/25OB^2+24/25OA*OB(圆半径是1,|OA|=|OB|=|OC|=1)1=9/25+16/25
3OA+4OB=5CO因为345是勾股数,所以OA与OB垂直,所以OA*OB=O.同样得OB*OC=-4/5,OC*OA=-3/5.则AOC的正弦值为3/5,BOC的正弦值为4/5,所以可求得S△AO
即3OA+4OB=5CO,因为345刚好是一组勾股数,所以OA与OB垂直,所以OA.OB=O.同样利用345组成的夹角可求得OB.OC=-4/5,OC.OA=-3/5.所以AOC的正弦值为3/5,BO
∵EF∥AC,∴△AOC∽△FOE∴OF/OA=OE/OC同理可得△ODE∽△OBC∴OE/OD=OD/OB∴OF/OA=OD/OB又∵∠BOA=∠BOA∴△OFD∽△OAB
证明:连接AF,∵BF=AC,∴弧AB+弧AF=弧AF+弧CF.∴弧AB=弧CF.∴∠F=∠FBC.又∵∠CAM=∠CBM,∴∠F=∠MAN.∵∠AMF=∠NMA,∴△AMF∽△NMA.∴AM/NM=
△PDC是等边三角形理由:因为△ABC是等边三角形所以AC=BC,∠BAC=60°因为∠CAP=∠CBP,AP=BD所以△APC≌△BCD(SAS)所以PC=CD因为四边形ABPC是圆内接四边形所以∠
根据向量运算,推算出ABC是直角三角形,且边长为3、4、5.面积3*4/2=6.具体过程你自己试试.再问:能否给步骤啊?过程啊?再答:步骤有些复杂:用拉密定律,倍角公式,正弦定理。设OA、OB、OC长
1.连接OB,OB=OA=OE=r三角形ABE为直角三角形角EAB+角E=90角E与角C对应同弧,角E=角C角EAB=90-角E=90-角C=角CAD2.三角形ABE相似与三角形ADCAD/AC=AB
证明:延长AO,交圆O于点F,连接BF∵AF是直径∴∠ABF=90°∵AD⊥BC∴∠ADC=90°=∠ABF∵∠C=∠F∴∠BAF=∠CAD∵AE平分∠BAC∴∠BAE-∠BAF=∠CAE-∠CAD即
解题思路:三角形内接于圆,就是三角形的三个顶点都在圆上。解题过程:三角形内接于圆,就是三角形的三个顶点都在圆上。也就是说,这个圆是三角形的外接圆。最终答案:略
(1).∵A,B,C在单位圆上,∴|OA|=|OB|=|OC|=1取OC与X轴的负向重合,于是OC=icos180?+jsin180?=-i,5oc=-5i.∵3OA+4OB=-5OC=5i,故可在x
即3OA+4OB=5CO,因为345是一组勾股数,所以OA与OB垂直,所以OA*OB=O.同样得OB*OC=-4/5,OC*OA=-3/5.则AOC的正弦值为3/5,BOC的正弦值为4/5,所以可求得
1.三角形ABC内接于以O圆心,1为半径的圆,∴|OA|=|OB|=|OC|=1,3向量OA+4向量OB+5向量OC=0,∴3OA+4OB=-5OC,两边平方得25+24OA*OB=25,OA*OB=