如图矩形abcd中点e,f分别是ab,cd上的点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:04:38
由矩形ABCD∽矩形EABF可得AEAB=ABBC,设AE=x,则AD=BC=2x,又AB=1,∴x1=12x,x2=12,x=22,∴BC=2x=2×22=2,∴S矩形ABCD=BC×AB=2×1=
∵E、F分别是OA、OD中点∴EF是△AOD的中位线∴EF∥AD∵ABCD是矩形∴AD∥BC∴EF∥BC
证明:(1)取PD中点Q,连AQ、QF,则AE∥QF∴四边形AEFQ为平行四边形∴EF∥AQ又∵AQ在平面PAD内,EF不在平面PAD内∴EF∥面PAD;(2)∵CD⊥AD,CD⊥PA,PA∩AD=A
(1)菱形连接MN,由矩形对称性可知MN为其对称轴容易证明Rt△MNB≌Rt△MNC,且NE,NF是直角三角形斜边上的中线∴有ME=EN=NF=FM,∴四边形MENF是菱形(2)对角线相等的菱形是正方
这种题目,你要理解它的意思.当一些条件没有限定的时候,就要明白,它是一个通例.比如PD没有限定长度,那就是说,面PDC垂直于面PDA是一定的.所以,你要明白它为什么可以垂直.算了,不废话了,直接上答案
设BC长X因为矩形ABCD和矩形EABF相似则X/10=10/(0.5X),解得X=10√2所以矩形ABCD面积=10X=100√2=141.42
1、因为:ABCE为矩形,所以AD=BC,又AC、BD分别为矩形的对角线,所以角DAE=角CBF,且AO=BO.E、F分别是OA、OB的中点,所以AE=BF,综上所述三角形ADE全等于三角形BCF.2
矩形ABCD∽矩形EABF∴AE/AB=AB/AD然后计算即可,你题缺条件
证明:∵E、F、G、H分别为四边中点∴EF‖AC,EF=1/2AC,GH‖AC,GH=1/2AC∴EF‖GH,EF=GH∴四边形EFGH是平行四边形∵AC⊥BD∴EF⊥EH(∵EH‖BD,EF‖AC)
你是问什么.但是看已知的条件你可用建立坐标系的方法求.简单又快.
取BC中点G,DE中点H,连接PH∵G是BC中点PB=PC∴PG⊥BC∵H是DE中点∴HG//AB∴HG⊥BC∴BC⊥面PHG∴PH⊥BC∵PD=PE∴PH⊥DE∵DE与BC在同一平面ABCD内,且不
证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,∴AC=BD,∴EF=12AC,EF∥AC,GH=12AC,GH∥AC同理,FG=12BD,FG∥BD,EH=
因为E,F分别是矩形ABCD一组对边AD,CB的中点所以BF=1/2BC因为矩形AEFB∽矩形ABCD所以AB:BC=BF:AB即AB×AB=BC×BF设BC=2,则BF=1/2BC=1AB×AB=2
∵矩形ABCD∽矩形EABF∴AB/EA=AD/EF又∵E.F分别为矩形ABCD的边AD、BC的中点,AB=1∴EA=1/2AD,EF=AB=1∴AD=√2(-√2舍去)∴S矩形ABCD=1*√2=√
设BC长X因为矩形ABCD和矩形EABF相似则X/10=10/(0.5X),解得X=10√2所以矩形ABCD面积=10X=100√2=141.42
根据题意,可知AE=FB=AD/2=BC/2∵AEFB∽ABCD∴AE/AB=AB/BCAB^2=AE·BC=(BC/2)·BC=BC^2/2(AB/BC)^2=1/2AB/BC=√2/2答:AB:B
因为E、F、G、H分别是各边的中点,容易证明三角形AEH、EBF、DHG、CFG是全等的所以EF=FG=GH=HE而它们的得40,所有EH=40/4=10AE:AH=3:4所以AE^2+AH^2=EH
S矩形ABCD=3S矩形ECDF推出AF=2FD——(1)矩形ABCD~矩形ECDF且AB=2推出AF*FD=FE*FE=AB*AB=4(2)设FD=x,则由(1)得AF=2x未知数代入(2)中,2x
答案=12求解如下:答:因为:S矩形ABCD=9S矩形ECDF所以:AB*BC=9*EC*CD,又因为:AB=CD=2所以:BC=9EC(1)因为:矩形ABCD~矩形ECDF所以:AB/EC=BC/C
AB:BC的值为二分之根号二.