如图甲所示,质量m=0.8kg的足够长的木板静止在
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:00:48
这道题简单啊,要使铁块始终在木板上不掉下来,那么它们之间就不能有相对运动,或者相对位移不能超过板子的长度L,铁块与木板之间的摩擦力为2N木板于地面之间的摩擦力为1N所以F小于1N时,两者都不会动,而当
这是临界条件的问题,可能出现的情况是:球和车厢壁可能会分离.判断方法:让角度不变,球不受车厢壁的弹力(既是临界条件),球为研究对象,受力分析加速度水平向左,求出加速度a=gtan370,=7.5m/s
(1)小木块从平台滑出后做平抛运动,有:h=12gt2得:t=0.4s木块飞出时的速度:v2=st=2m/s(2)因为小木块在平台上滑动过程中做匀减速运动,根据:v22−v21=−2ax知v2-s图象
一:(1)Fn=mg-FtFt=mg-Fn=0.5kg×10N/kg-3N=2NFt对A做匀速圆周运动提供向心力(2)Ft=mV²/rV=√(Ft·r/m)=√(2N×0.2m/0.1kg)
搞清楚物理过程,A向右减速运动,B向右加速运动,A不从B上滑落的临界条件是A刚好运动到B右端时两物体速度相等.则有:Sa-Sb=1mSa=V.t-1/2at^2Sb=1/2a`t^2a=ug=2a`=
(1)(2)①取平板车与铁块为研究系统,由M>m,系统每次与墙碰后m反向时,M仍以原来速度向右运动,系统总动量向右,故会多次反复与墙碰撞,每次碰后M都要相对m向右运动,直到二者停在墙边,碰撞不损
(1)小滑块的加速度a1=(F-μmg)/m=8m/s2,长木板的加速度a2=μmg/M=2m/s2,相对加速度为6m/s2,相对位移为s1=1/2at2=1/2*6*0.82=1.92m(2)撤去力
(1)s=v0t+1/2at^2=1/2*(10-0.2*1*10)/1*(0.8)^2=2.56m(2)a'=umg/g=ug=0.8*10=8m/^2v=at=8*0.8=0.64m/sx=v^2
:(1)设最后三者的共同速度为v,根据动量守恒定律mBv0-mAv0=(M+mA+mB)v…①求得:v=1m/s方向向左. &nb
去向右为正方向m1v1+m2v2=(m1+m2+M)V-2*1+4*1=(1+1+2)VV=0.5μm1gL=1/2*m1v1^2+1/2*m2v2^2-1/2*(m1+m2+M)V^2L=9.5米
第一题受力分析:物体竖直方向上受力平衡,水平方向上受恒力F和摩擦力f作用,F=4N,f=μmg=(0.2×1×10)N=2N,计算出合力F‘=2N物体返回A点时的速度可用几种方法求(1.先求加速度2.
当角速度较小时,只有上面的绳子受力,下面的不受力,去临界条件,当下面的绳子伸直但又不受力时,有:上面的绳子与杆的夹角满足,sina=0.6,cosa=0.8,tana=0.75此时小球的向心力为F=m
1.碰撞后瞬间,小车速度向左,大小保持2m/s滑块继续向右2m/s运动对平板车受力分析,平板车受到来自滑块的摩擦力是向右的,大小为μMg=12N所以它的加速度是6m/s²1/3s后速度即为0
(1)在0~2s内两物体一起以0.5m/s的速度匀速运动,则有P=F1v1 根据两物体匀速运动则有拉力等于摩擦力即F1=f而地面的摩擦力f=μN=μ(M+m)g代入数据得μ=0.
(1)设力F作用时物体的加速度为a1,对物体进行受力分析,由牛顿第二定律可得F-mgsinθ-μmgcosθ=ma1撤去力后,由牛顿第二定律有mgsinθ+μmgcosθ=ma2根据图象可知:a1=2
http://www.jyeoo.com/physics2/ques/detail/4d7c0ff3-14a9-4635-9073-8d2a311f33e3
(1)A在小车上停止运动时,A、B以共同速度运动,设其速度为v,取水平向右为正方向,由动量守恒定律得:mAv2-mBv1=(mA+mB)v,解得,v=lm/s;(2)设小车做匀变速运动的加速度为a,时
(1)A在小车上停止运动时,A、B以共同速度运动,设其速度为v,取水平向右为正方向,由动量守恒定律得:mAv2-mBv1=(mA+mB)v 解得,v=1m/s&nbs
(1)由图可知,在第1s内,A、B的加速度大小相等,为a=2m/s2.物体A、B所受的摩擦力均为f=ma=2N,方向相反.根据牛顿第三定律,车C受到A、B的摩擦力大小相等,方向相反,合力为零.(2)设
C可以求出绳子拉力为30ND中绳对滑轮作用力即为2倍的拉力,应为60N再问:怎麽求出的30,为何x2再答:设绳拉力为T对A:T-mAg=mAa对BC:(mB+mc)g-T=(mB+mA)a解得a=5代