如图甲,已知角ABC=90,△ABD是边长为2的等边三角形,点e为射线BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:08:49
如图甲,已知角ABC=90,△ABD是边长为2的等边三角形,点e为射线BC
已知△ABC中,AB=43

取AB的中点E,得到BE=AE=12AB=23,连接DE,可得DE为△ABC的中位线,∴DE∥AC,∴DE=12AC=3,即DE=12AE,∵∠BAD=30°,∴∠EDA=90°,根据勾股定理得:AD

已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,角BAC=90°,且AB=AA1=2,

证明:取BB1中点M,则MD//AB,ME//AC,所以平面MDE//面ABC,所以DE//面ABC,得证,BB1⊥面ABC,易知BF⊥AF,根三垂线定理,知B1F⊥AF,BB1/FC=BF/CE=√

在Rt△ABC中,角C=90度.已知Rt△ABC的周长为2+根号6,斜边为2,求此三角形的面积.

设AC=X,则BC=根号6-X由勾股得X²+(根号6-X)²=2²X1=(根号6-根号2)/2,X2=(根号6+根号2)/2面积=1/2(根号6-根号2)/2*(根号6+

如图,已知Rt△ABC中,角C=90°,AC=4cm

设D在AC上,E在AB上连接BD∴AD=BD设CD=X那么BD=AC-CD=4-X∴BC²+CD²=BD²3²+X²=(4-X)²X=7/8

已知,如图,在RT三角形ABC中,角ABC=90,

题目中AO=x,应改为AP=x设OB=OE=OD=R在RT三角形AOD中,AO^2=OD^2+AD^2(1+R)^2=R^2+4R=3/2AO=1+R=5/2AB=AO+BO=4如AP=AD,则x=A

初二华东师大,数学题已知:△ABC,角C=90°,C=10,a+b=12.求△ABC的面积

a+b=12①a^2+b^2=100②由①^2-②得a*b=22面积=a*b/2=11

△ABC中,已知a=52

∵a=52,c=10,A=30°∴根据正弦定理,得到asinA=csinC,可得sinC=csinAa=10×1252=22∴结合0°≤C≤180°,可得C=45°或135°∵A+B+C=180°,A

如图,已知在△ABC中,角ACB=90°,四边形DECF是正方形

设正方形的边长为X三角形AED与三角形DFB下似,有FB:ED=DF:AE即:(8-X):X=X:(24-X),解得X=6又因为三角形AEG与三角形ACF相似,有AE:AC=EG:CF即(24-6):

如图,已知三角形ABC中,角BAC=90度,角ABC=角ACB

在RT△BCF中∠CFB=90-∠FBC在RT△BED中∠BED=90-∠FBA所以∠CFB=∠BED因为∠FEC=∠BED(对顶角)所以∠CFB=∠FEC△CEF为等腰三角形所以CF=CE

已知如图在△ABC中∠C=90用直尺和圆规作△ABC的高CD,角平分线AE,    CD,

∠CFE=∠CAF+∠ACD=∠CAF+(90°-2∠CAF)=90°-∠CAF在三角形CAE中∠CEF=90°-∠CAF

已知如图在△ABC中∠C=90用直尺和圆规作△ABC的高CD,角平分线AE,

∠CFE=∠CAF+∠ACD=∠CAF+(90°-2∠CAF)=90°-∠CAF在△CAE中∠CEF=90°-∠CAF再问:哪复制、黏贴的-_-再答:其实你问一遍就可以的,初一的知识,实在是.....

△ABC中,已知tanA=13

△ABC中,已知tanA=13,tanB=12,∴tan(A+B)=tanA+tanB1−tanAtanB=13+121−13×12=1,∴A+B=π4,∴C=3π4,故答案为:3π4.

已知三角形ABC中,角ABC=90度,P为三角形ABC所在平面外一点,PA=PB=PC.求证:平面PAC垂直平面ABC.

只OP垂直面ABC不能证明面PAC垂直面ABC啊回答:\x0d过一条垂线上的任意面垂直那个面,面PBC是垂线上的一个面,就垂直那个面了,我用的反证法,有个定理给你说,三角形斜边的中点到三顶点的距离相等

已知三角形ABC中,角ABC=90,P为三角形ABC所在平面外一点,PA=PB=PC,求证平面PAC垂直平面ABC.

过P作PO垂直平面ABC于O,则PA,PB,PC在平面ABC上的射影分别为OA,OB,OC,因为PA=PB=PC,所以OA=OB=OC(也可由直角三角形PAO,PBO,PCO全等得到),即O为三角形A

已知△ABC中,a=2

由正弦定理可知asinA=bsinB∴sinA=asinBb=22∵0°<A<120°∴A=45°故答案为:45°

已知在△ABc中,角A=90。,AB=Ac,cD平分角ACB

解题思路:运用三角形全等解答。解题过程:见附件。最终答案:略

已知△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA=PB=PC,求证:平面PAC⊥平面ABC.

证明:取AC,BC的中点D,E,连结PD,PE,DE.显然DE为△ABC的中位线,∴DE‖AB.∵AB⊥BC,∴DE⊥BC.∵PB=PC,E为BC中点,∴PE⊥BC,∴BC⊥平面PDE,∴BC⊥PD.

已知,RT△ABC中,角C=90°,AC+BC=2倍根号3,AB=2,求S△ABC

AC+B=2√3.(AC+BC)^2=12.AC^2+2AC*BC+BC^2=12.AC^2+BC^2=AB^2=4.2AC*BC=12-4=8.AC*BC=4.S△ABC=(1/2)*AC*BC=1

已知△ABC中∠ABC=90,SA⊥平面ABC,AD⊥SC,求证:AD⊥平面SBC

∵SA⊥平面ABC∴BC⊥SA又∵∠ACB=90°即BC⊥AC∴BC⊥平面SAC又∵AD∈平面SAC∴AD⊥BC又∵AD⊥SC∴AD⊥平面SBC

已知△ABC中,AB=39

∵(39)2=62+(3)2,∴AB2=BC2+CA2,∴△ABC是直角三角形,且∠C是直角.在直角△AMC中,CA=3,CM=12BC=3,∴∠CMA=30°,∴∠DMB=30°,在直角△BDM中,