如图点o是Rt三角形abc斜边ab上一点以oa为半径的圆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:56:04
如图点o是Rt三角形abc斜边ab上一点以oa为半径的圆
以RT三角形ABC的直角边为直径,作半圆O,交斜边于D,OE平行AC交AB于E,求证DE是圆O的切线

连接O、D∵OE‖AC=〉∠ODC=∠DOE∵OC、OD为圆O的半径=〉∠ODC=∠OCD∵180°-∠ODC=∠ODC+∠OCD=2∠DOC∵180°-∠ODC=∠DOE+∠EOB=〉∠DOE+∠E

如图 在rt三角形abc,角acb=90度,cd是斜边ab上

解题思路:根据题意得出每对三角形中的两组内角相等,可得三角形相似解题过程:解:有三对三角形相似,即:△ACD∽△CBD△ACD∽△ABC,△CBD∽△ABC理由:①∵CD⊥AB,&there

如图,已知圆o是Rt三角形abc的内切圆,斜边ab与圆o相切于点d,ao的延长线交bc于点e.求证:ad×ae=ao×a

已知,斜边ab与圆o相切于点d,可得:od⊥ab,而且,ac⊥bc,∠bae=∠cae,可得:ad/ao=cos∠bae=cos∠cae=ac/ae,所以,ad×ae=ao×ac.

如图,在RT三角形ABC中,角ACB=90度,AC=5,BC=12,AD是三角形的角平分线,过A,C,D三点的圆O与斜边

证明:【1】第一步:∠ACD=90°→AD是圆O的直径→∠AED=90°第二步:AD是三角形的角平分线→∠DAE=∠DAC又∵AD=AD∴△ACD≌△AED(AAS)→AC=AE【2】由勾股定理可求得

已知,在Rt三角形ABC中,EF是中位线,CD是斜边AB上的中线.求证;EF=DC

不知道你学过定理没,直角三角形斜边中线等于斜边一半,这是常识,如果要证明,你就作一矩形,它的对角线相等,又相互平分,所以,以其中三个顶点为直角三角形的斜边就是对角线,那么中线就是另一条对角线的一半,所

以Rt三角形ABC的一条直角边AB为直径作圆,交斜边BC于E,F是AC的中点.求证:EF是圆O的切线

证明:连接AE,因为AB为直径所以角BEA为直角,所以角AEC为直角在三角形AEC中,F为AC中点所以EF=1/2AC=FC所以角C等于角FEC又因为OE、OB为半径所以OE=OB所以角B等于角BEO

有图,CD是Rt三角形ABC斜边AB上的高

设CD=x由勾股定理AC²=100+x²BC²=25+x²AC²+BC²=AB²=15²所以2x²+100+2

以Rt三角形ABC的直角边AC为直径的半圆O,交斜边于点D,OE平行bc叫AB于点E,求证:DE是圆的切线

证明:连接OD∵OD=OC∴∠C=∠ODC∵OE∥BC∴∠C=∠AOE,∠ODC=∠DOE∴∠DOE=∠AOE∵OA=OD,OE=OE∴△ODE≌△OAE∴∠ODE=∠ABC=90°∴DE是圆O的切线

如图,已知,以Rt三角形ABC的直角边AB为直径做圆O,与斜边AC交与点D,E为BC边上的中点,连接DE.求证:DE是圆

思路,只要证明ODE为直角即可.容易得知BDC为rt三角形,根据中线定理,DE=BE,又有OD=OB,连接OE,公共边,可得,三角形ODE全等OBE,则角ODE为直角.

1.如图1,以Rt三角形ABC的直角边AB为直径的圆O与斜边AC交与点D,点E是BC的中点.求证:DE是圆O的切线

1、证明:连接DO、BD.∵AB为直径∴角ADB=90°(直径所对的圆周角为90°)∵角ADB+角CDB=180°∴角CDB=180°-角ADB=90°角EDB标角1角EBD标角2角OBD标角3角OD

1.如图,以RT三角形ABC的直角边AB为直径的半圆O,与斜边AC交与D,E是BC边上的重点,连接DE.

只做第二题.用^代表平方CE/ED=6/5,AE/EB=2/3两式相乘,得:(AE/ED)*(CE/EB)=4/5=>(CE/EB)^=4/5(易证:AE/ED=CE/EB)两式相除,得:(AE/CE

如图,Rt三角形ABC中,CD是斜边上的高,三角形ACD和三角形CBD都和三角形ABC相似吗?证明

在ΔABC与ΔACD中,∠ACB=∠ADC=90°,∠A=∠A,∴ΔABC∽ΔACD,∴AC/AB=AD/AC,∴AC^2=AD*AB.在ΔABC与ΔCBD中,∠ACB=∠CDB=90°,∠B=∠B,

Rt三角形ABC中,CD是斜边上的高,三角形ACE和三角形BCF都是正三角形试说明AC:BC=AD:CD 三角形EAD

角BAC等于角CAD,故直角三角形ACB相似于直角三角形ADC,故AC:BC=AD:CD正三角形,所以AE=AC,CF=CB,故AE:CF=AC:CB=AD:CD且由于角CAD=角DCB,角EAC=角

在RT三角形ABC中,斜边AB=2,且三角形ABC的周长是2+根号6,求三角形ABC的面积

由周长公式得:①a+b=√6,由勾股定理得:②a²+b²=4,∴①²-②得:2ab=2,∴½ab=½,∴△ABC面积=½ab=½.

如图在RT三角形ABC中,CD是斜边AB上的高,求证三角形ACD相似三角形ABC

用角角边.因为角A加角ACD等于九十度角A加角B等于九十度所以角ACD等于B又因为角A等于角A且AC等于AC所以根据定理可得相似证明完毕.自己在写点步骤吧连贯一下.

如图圆o是rt三角形abc的内切圆,角abc=90度,ab=13.

由题意:BC=根(AB²-AC²)=5,所以三角形的面积s=1/2ACBC=30..所以.的内切圆半径r=2s/(a+b+c)=60/30=2,故s阴影=30-4π.选D.

几何.已知CD是RT三角形ABC斜边上的高……急!

①就是全等,您已经会了.②∵RT△ACB,AC=4,AB=5.∴根据勾股定理,可求CB=3.又∵CD⊥AB.∴RT△ADC∽RT△ACB(∠ACD=∠B,∠A=∠A).∴CD/AD=3/4.又∵∠A=

已知:在rt△ABC与RT△ABC'中 ∠C=∠C'=90 CD C'D'分别是两个三角形斜边上的高

证明:∵在Rt△ACD和Rt△A'C‘D’中,CD/C'D'=AC/A'C'∴△ADC∽△A'D'C'又∵∠ACB=∠A'C'B'∴△ABC∽△A'B'C'得证