如图点ef分别wei正方形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:58:25
如图点ef分别wei正方形
四边形ABCD是正方形,EF分别是AD,DC上的一点,且角EBF=角GBF,GC=AE求证:EF=CD+AE

这个题缺了一个条件,就是G在DC的延长线上这样,可以这么做:易证AEB与CGB全等,进而EFB与GFB全等,于是EF=FG=FC+CG=FC+AE得证!

如下图.abcd是正方形ef分别是ad,cd的中心点阴影部分占正方形的几分之几?

∵没有图,我只能假设阴影是那一部分了,如下两种情况:①阴影如果是△EDF,则:阴影部分占正方形的八分之一.②阴影如果是五边形ABCFE,则:阴影部分占正方形的八分之七.

已知,如图所示,正方形ABCD,E、M、F、N分别是AD、AB、BC、CD上的点,若EF⊥MN,求证:EF=MN.

证明:如图,过点E作EG⊥BC于G,过点M作MH⊥CD于H,∵四边形ABCD是正方形,∴EG=MH,EG⊥MH,∴∠1+∠3=90°,∵EF⊥MN,∴∠2+∠3=90°,∴∠1=∠2,∵在△EFG和△

在正方形ABCD中,EF分别为BC,CD上的点 且BE+DF=EF 求证 角EAF=45度

提示:延长CB到H,使得BH=DF,连AH.证三角形AEH全等于三角形AFE.

如图,正方形ABCD中,EF,MN分别是两组对边所截得的线段,求证:若EF⊥MN,则EF=MN

证明:因为  ABCD是正方形   所以 AB=BC,   角A=角ABC=90度   作BH//EF,  CG//MN 

如图正方形ABCD中,EF MN 分别是两组对边所截取的线段,求证:若EF⊥MN ,则EF=

分别过点E、M向对边作垂线,构成两直角三角形,再证两三角形全等即可

如图,正方形ABCD中,EF,MN,分别是两组对边所截得的线段,求证;若EF垂直MN,则EF等于MN

如图所示:分别过E、M作BC、AB的垂线交于E1、M1,则因MM1=EE1,∠NMM1=∠FEE1,故△MM1N≌EE1F.于是有,EF=MN.证毕.(抱歉,所画图考不上,而且字母的下标也都不承认!)

初中数学:如图正方形ABCD中,EF MN 分别是两组对边所截取的线段,求证:若EF⊥MN , 则EF=

连结an,df,证明三角形and和cfd全等就行,∠c和∠d是直角,∠fdc+∠dfc=90度,∠fdc+∠adf=90度,所以∠dfc=∠adf,ad=cd,两角一边

如图,正方形ABCD中,E、F分别在BC、CD上,EF=BE+DF.

⑴证明:把⊿ABE绕A逆时针旋转90º,到达⊿ADG∵EF=BE+DFFG=FD+BE∴FG=FE又 AE=AGAF=AF∴ΔAFE≌ΔAFG ﹙SSS﹚∴∠FAE=&#

如图,正方形ABCD中,点E,F分别在AD,BC,上,点G,H分别在AB,CD上,且EF垂直GH求EF/HG

过H作HN垂直AB于N,过E作EM垂直BC于M,EF交MN于O,四边形EDCM和CHNB是矩形,角EMF=角HNG=90度,EM=CD=BC=HN,EM垂直HN,角FEM=90度角EOH=角GHN,三

在正方形ABCD-A1B1C1D1中,E、F分别是A1D,AC上的点,且EF⊥A1D,EF⊥AC,求证EF平行于BD1

连接CB1,AB1CB1//DA1,EF⊥A1D,那么EF⊥CB1,EF⊥AC所以EF⊥ACB1很容易证DD1B⊥AC,则AC⊥BD1,同理AB1⊥BD1,所以BD1⊥ACB1所以EF//BD1

在正方形ABCD中,EF⊥GH,EF分别在AB.CD上.G.H分别在AD.BC上.求证:EF=GH

作DQ‖FE,CP‖HG.则DQ‖=FE,CP‖=HG[平行四边形对边],CP⊥DQ.∠DCP=90º-∠CDQ=∠QDA,⊿DCP≌⊿AQD.CP=DQ.EF=GH

正方形ABCD,EFGH分别在AB,CD,AD,BC上 ,EF⊥GH,求EF=GH

证明:过正方形中点O做E1F1∥EF,G1H1∥GH,点E1、F1、G1、H1分别交于正方形四边(或延长线),则E1F1=EFG1H1=GH∵EF⊥GH∴E1F1⊥G1H1由正方形中心性质可知:E1F

梯形ABCD中,AD//BC,分别以两腰AB、CD为边向两边做正方形ABGE和正方形DCHF,连结EF,设线段EF的中点

如图,设AE=a﹙向量﹚ AD=c, DF=b则EF=-a+c+b ME=﹙-a+c+b﹚/2  MA=﹙-a+c+b﹚/2  -

正方形ABCD内有两条相交线段MN、EF、,M、N、E、F分别在边AB、CD、AD、BC上.若MN=EF,则MN垂直EF

如图,过点B做EF的平行线交CD于点H,过点A做MN的平行线交BC于点G,AG交BH于点P      易证四边形AGNM、BEFH为平行四边

正方形ABCD边长为1,分别以4个顶点为圆心,边长为半径,叫于EF,求EF

花了我2优点···Lz一定要采纳啊,不然我就亏了··· 点击图片放大!   很高兴为您解答,【学习宝典】团队为您答题.如追加其它问题, 如果有其他需要

已知ef分别是正方形ABCD 的边AB和CD中点,沿EF把正方形折成一个直二面角

取BE中点G,DF中点H,EF中点M连接GM,MH,GH∴MH//=1/2DE,MG//=1/2BF∴异面直线BF,DE所成角是∠GMH的补角设原正方形边长=4∴BF=DE=2√5∴MH=GM=√5∵

EF分别是正方形ABCD的边AB和CD的中点,EF,BD相交于点O,以EF为棱将正方形折成直二面角

题目不全啊再问:EF分别是正方形ABCD的边AB和CD的中点,EF,BD相交于点O,,以EF为棱将正方形折成直二面角,求角BOD的度数再问:EF分别是正方形ABCD的边AB和CD的中点,EF,BD相交

如图,正方形ABCD中,ENFM分别是各边上的点,EF垂直MN,求证MN=EF

证明:设点E在BC上,点N在CD上,点F在DA上,点M在AB上.又设EF与MN的交点为P过点F作FS⊥BC,交BC于点S;过点N作NT⊥AB,交AB于点T.因为∠B=90°,∠MPE=90°所以∠BM