如图点def分别在三角形abc的边,bc,ab,ac上,且de平行ac
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:39:50
(1)三角形ABM是相似于三角形DEN的,证明如下由三角形ABC~三角形DEF,故角ABC=角DEF又AM,DN分别是三角形ABC和三角形DEF的高,故角AMB=角DNE=90度三角形ABM与三角形D
证明:D,E分别为BC,AC的中点,即DE为三角形ABC的中位线,则:DE/AB=1/2;同理可证:EF/BC=1/2;DF/AC=1/2.即DE/AB=EF/BC=DF/AC.故⊿DEF∽⊿ABC.
因为三角形ABC面积比上三角形BCD面积是19比21,且两三角形同高,所以AB比BD等于19比21.如此类推可知AC比CE等于40比23,AD比DF等于63比25,AE比EG等于88比28,AF比FH
证明:因为D,E,F分别是三角形ABC三边的中点所以DE.EF分别是三角形ABC的中位线所以DE=1/2ACAD=BD=1/2ABAF=CF=1/2ACEF=1/2AB因为AB=AC所以AD=DE=E
∵△SABC:△SBCD=19:21,且两三角形同高,∴AB:BD=19:21.如此类推可知:AC:CE=40+23,AD:DF=63=25,AE:EG=88:28,AF:FH=116:29.∵△EF
显然三角形DEF与三角形ABC相似,根据面积公式S=absinC/2可知,三角形DEF的面积是三角形ABC的四分之一即16.以此类推第三个三角形的面积为第二个的四分之一为4,第四个三角形的面积为第三个
/>∵D、E、F分别是AB、BC、AC的中点∴DE=AC/2EF=AB/2DF=BC/2∴三角形ABC的周长与三角形DEF的周长和=3×三角形DEF的周长=18cm∴DEF的周长=6cm
角AGD=角FGH,角GFH=角DAG=60度,所以角GHF=角ADG即ADG与GFH相似又角ADG+角BDE=120度,角FGH+角GHF=120,所以角BDE=FGH即证明了BDE与AGD,GFH
矩形5x2中减3个三角形S△ABC=5x2-(5/2+2/2+4/2)=10-5,5=4,5
过点D作DG平行于BC∵AB=2BC=1CA=√3∴△ABC是Rt三角形,∠C=90°∴DG⊥AC设正三角形△DEF的边长为x∴∠DFE=60°,DE=DF=x∵∠CFE=α,∠CFE+∠DFE+∠A
∵三角形ABC中,已知点D,E,F分别为AB,AC,BC的中点,S⊿ABC=4厘米²,∴S⊿DEF=S⊿ABC÷4=1
过三个角作角平分线交于点H为内切圆的圆心圆心到各边的距离最小圆与三个边的内切点固定所以两点之间的弦固定三条弦加起来也最短所以当def为三角形的三个内切点时△def的周长最小再问:有木有初二的答发再答:
在三角形ABC中'.'D为BC中点.'.三角形ADC为三角形ABC面积的一半'.'E为AD中点.'.三角形CED为三角形ACD面积的一半同理得三角形DEF为三角形ABC面积的1/8=1
向ABC外侧做等边三角形BCG,连接AG交BC于D,过D引BG的平行线交AB于E,引CG的平行线交AC于F,那么DEF即为所求.
ΔABC中:3²+4²=5²故ΔABC是直角三角形∵ΔABC∽ΔDEF∴ΔDEF也是直角三角形∵6²+8²=10²∴ΔDEF中的另外两边分别
证明:如图过C做CG垂直AB的延长线于G,过F做FH垂直DE的延长线于H∵∠ABC=∠DEF