如图点A,B是半径为8的圆O上两点AB=10,点P是圆O上的动点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 14:23:53
如图点A,B是半径为8的圆O上两点AB=10,点P是圆O上的动点
如图,MN是半径为1的圆O的直径,点A在圆O上,角AMN=30度,B为AN弧的中点P是直径MN上一动点PA+PB的最小值

首先,“如图”两字很多余其次,很明显,这是高中数学的典型问题(怀念~)最后,哥几乎是完全忘了,短期内解不出来(不好意思呵)另外再说一句,会这题的绝大多数这时候还在为学业努力奋斗,没有时间上网,所以你这

(几何证明选讲选做题)如图,圆O中的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与OC的

连接OA,∵圆O的圆周角∠ABC对弧AC,且∠ABC=30°,∴圆心角∠AOC=60°.又∵直线PA与圆O相切于点A,且OA是半径,∴OA⊥PA,∴Rt△PAO中,OA=1,∠AOC=60°,∴PA=

A B 是圆O 的直径B O =2以B O 为半径画弧交圆O 于C D 两点求三角形B C D 的面积

设OB与CD的交点为E因为BO=2,所以BC=BD=2因为BE=二分之一BO=1所以BE=1所以CE=根号3所以DE=根号3所以CD=二倍根号3所以.

如图AB是圆O的直径,C为圆上一点,过C的切线分别过A,B两点的切线交于P,Q.已知AP=1,BQ=4求圆O的半径

过点P作PD⊥BQ,则可知ABPD为矩形,BD=AP=1PD=ABQD=BQ-BD=-4-1=3由题可知PC=AP=1CQ=BQ=4则PQ=4+1=5在Rt△PDQ中,PD=PQ-QD=5-3则PD=

圆O的半径为定长r,A是圆O内一定点,P是圆O上任意一点.线段AP的中垂线 l 和半径OP相交于Q,当点P在圆上运动时,

∵Q是AP中垂线上的点∴QA=QP这样QO+QA=OQ+QP=r∴Q的轨迹是椭圆(到两定点的距离之和等于定长的点的轨迹是椭圆)如下图(点击可放大)

ob.oc是圆o的半径,a是圆o上一点,若已知角b=20,角c=30,求角a的度数

连接AO,并延长,交圆于点E,∴∠BOC=∠BOE+∠COE=∠ABO+∠BAO+∠ACO+∠CAO=∠A+∠ABO+∠ACO,∵2∠A=∠BOC,∴∠A=50°.

数学帝进!数学题求解如图,A、B、C三点在圆O上,且三角形ABC是锐角三角形,若圆O的半径为10,sinA=三分之五,求

由C点做一条直线CD并使CD过圆心O点交圆上于D点再连接DBCD过圆O的圆心故∠DBC为直角.又∠ABC于∠DBC是圆O上共用弧BC上的两角故∠ABC=∠DBC然推出sinA=sinD=BC:DC=3

如图,MN是半径为1的圆O的直径,点A在圆O上,角AMN=30度,B为AN弧的中点,P是直径MN上一动点,则PA+PB的

在圆上取一点B',使弧B'N=弧BN,连接AB',交MN于P',连接PB'\x0d显然B,B'点关于MN对称,所以PB=PB'\x0d而在三角形APB'中,PA+PB'>AP'\x0d所以:PA+PB

如图,CD是半径为1的圆O的直径,点A在圆O上,∠AOD=60°,B为弧AD的中点,在直径CD上求作一点P,使PA+PB

作A关于直径CD的对称点E,连接BE,BE与CD的交点即为点P的位置.而BE的的长度即为PA+PB的最小值.因为E是点A关于直径的对称点,所以角EOD等于角AOD等于六十度.而B为弧AD的中点,所以角

如图圆O的半径为1,点P是圆O上一点,弦AB垂直平分线段OP,点D是弧APB上任一点(与端点A B不重合),DE⊥AB于

同学题目是这个么如图圆O的半径为1,点P是圆O上一点,弦AB垂直平分线段OP,点D是弧APB上任一点(与端点AB不重合),DE⊥AB于点E,以点D为圆心,DE长为半径作圆D,分别过点A、B作圆D的切线

点A,B,C,在圆O上,圆O的半径为2,若AC等于圆O的半径,角ABC=45°,求弦BC的长.

题目有问题!点A,B,C在圆O上,若角ABC=45°,AC就不可能等于圆O的半径!再问:题目是这样的啊。再答:原题是∠ACB=45°,你打成了∠ABC=45°再问:对不起哦,打错了。请帮我解决。再答:

如图所示,圆O的半径为1,A,B,C是圆周上的三点,满足∠ABC=30°,过点A做圆O的切线

2.连结OA,则角OAP=90度,角AOC=2角ABC=60度,角P=30度,OP=2OA=2.

圆综合证明题如图,圆O的半径为1,点P是圆O上一点,弦AB垂直平分OP,点D是APB上任一点(与端点A,B不重合),DE

(1)AB垂直平分OP则BP=BO因为OB=OP所以OB=OP=PB三角形OPB为正三角形OB=1,OF=1/2OP=1/2勾股定理BF=√3/2AB=2BF=√3(2)连接AD,BD∠DAB=1/2

在半径为R的圆O上,取点A 以A为圆心,r为半径做一圆,再在圆A上取点B 过B点作圆A的切线 交圆O于P,Q两点,求证,

连AB,∵PQ与圆A相切于点B∴AB⊥PQ且r=AB在Rt△PAB中,AP=AB/sin∠P=r/sin∠P--------------------------------------①在Rt△QAB

如图所示,已知A,B是圆O上的两点,∠AOB=120°,C是弧AB的中点,若圆O的半径为4㎝,求四边形OACB的面积

AOBC是菱形.证明:连OC∵C是AB^的中点∴∠AOC=∠BOC=1/2×120°=60°∵CO=BO(⊙O的半径),∴△OBC是等腰三角形∴OB=BC同理△OCA是等边三角形∴OA=AC又∵OA=

如图,A是半径为2的圆O上的一点,P是OA的延长线上的一点,过点P做圆O的切线,切点为B,设PA=m,PB=n

(1)连接OB,则△PAB是直角三角形,所以PO的平方=PB的平方+OB的平方所以(m+2)^2=2^2+4^2,解得,m=2+2根5.(2)存在这样的点C,使△PBC为等边三角形,点c也是切点,且角

如图,CD是圆O的直径,以D为圆心,DO为半径作弧,交圆O于点A,B

连接OA,OB,AD,有AO=AD=OD,所以∠AOD=60° 同理,∠BOD=60°,所以∠AOB=120°.还可得出∠AOC=180°-60°=120°,所以∠AOB=∠AOC=∠BOC