如图正方形abcd边长为3以直线ab为轴将正方形旋转一周

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:18:28
如图正方形abcd边长为3以直线ab为轴将正方形旋转一周
如图,已知正方形ABCD的边长为1,E,F分别为AD,BC的中点,把正方形沿对角线AC折起直二面角,

过E作EG⊥AC于G,∵E是AD中点,则AG=AC/4,连FG∴FG²=5/8∵⊿ADC⊥⊿ABC∴EG⊥FG∵正方形ABCD的边长为1,则AC=√2在RT⊿EFG中EG=√2/4∴EF&#

如图已知四边形ABCD是边长为2的正方形以对角线BD为边

① EF=AF.证明: 如图,过E作BA的延长线的垂线EG,垂足为G.已知 EF^2+(FA+2)^2=ED^2=(2*2^1/2)^2   

如下图,正方形ABCD边长为1

(π(派)-2)/2

如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是______.

正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体为半径为3圆柱体,该圆柱体的左视图为矩形;矩形的两边长分别为3cm和6cm,故矩形的面积为18cm2.故答案为:18cm2.

如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是______.

直线AB为轴,将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,几何体的主视图是长6cm,宽3cm的矩形,因此面积为:6×3=18(cm2),故答案为:18cm2.

两个正方形相连如图.ABCD边长为3,BEFG边长为5.求阴影△HDE的面积.

连接BD∵四边形ABCD和BEFG都是正方形∴∠ABD=∠AEG=45°∴BD‖GE∴△HDE的面积=△BHE的面积(同底等高)=1/4正方形BEFG的面积=25/4我改过来了

空间向量与立体几何如图,在直二面角D-AB-E中,四边形ABCD是边长为2的正方形,三角形AEB是等腰直角三角形,其中∠

根据已知条件很容易算出来三角形ACD的面积,以及E到AB的距离从而可以算出四面体E-ACD的体积.四面体E-ACD的体积等于四面体D-ACE的体积而三角形ACE的面积也很容易求最终D到ACE的距离,即

如图,圆内接一个边长为a的正方形ABCD,分别以正方形各边为直径向正方形外作半圆,则四个半圆与正方形外接

大圆面积=π*(a/√2)²=a²π/2正方形面积=a²小半圆面积=(1/2)*π*(a/2)²=a²π/8∴所求阴影部分面积=4*小半圆面积+正方形

如图平行四边形ABCD中;-AB=2,分别以AB、A.D为边长 画两个正方形,正方形ABEF的面积等于4,正方形ADGH

如果你还没有立体的概念,那你只要延长fa到hc上交于点o,则高为fo=(af+ao),s=(ef+hc)fo/2.如果这是立体图形,每一种bad角都对应有一个面积范围,没有固定值,但能求出最大和最小值

如图,已知面ABCD是边长为3的正方形,EF∥AB,平面FBC⊥面ABCD,

如图,多面体分为三棱柱BCF-MNE(底面为BCF,高位EF)和四棱锥(底面AMND,高FH)体积=1/2BC*FH*EF+1/3AM*MN*FH=BC*FH(EF/2+AM/3)=3*2*(1/3+

如图,ABCD为正方形,边长为a,以点B为圆心,以BA为半径画弧,则阴影部分的面积是()

阴影部分面积=a²-1/4a²π=(1-1/4π)a²(一般写这个结果)=0.215a²(π取3.14写这个结果)

如图,已知正方形ABCD的边长为a,以角A为公共角在正方形ABCD的内部另画三个小正方形,将正方形ABCD的面积

有的..因为面积四等分..设AE在AC中最短AF其次AG最长,AE=b,AF=c,AG=d面积四等分则b平方=(1/4)a平方c平方-b平方=(1/4)a平方即:c平方=(1/2)a平方d平方-c平方

如图,边长为3的正方形ABCD,以A为原点,AC所在直线为Y轴建立直角坐标系,写出正方形各个顶点的坐标

虽然没看到图,不过也能做.A(0,0)B(3/2√2,3/2√2)C(3√2,3√2)D(-3/2√2,3/2√2)

如图,如图,边长为3的正方形ABCD,以A为原点,AC所在直线为Y轴建立直角坐标系,写出正方形各个顶点的坐标.

A(0,0)B(3√2/2,3√2/2)C(0,3√2/2)D(-3√2/2,3√2/2)再问:为什么?过程。谢谢再答:如图,因为 AB=BC=CD=AD=3,所以 AC=3√2,

如图,边长为6的正方形abcd,以a为原点ac所在直线为y轴建立直角坐标系,写出正方形各个顶点的坐标

A(0,0),C(0,6√2),B(3√2,3√2),D(-3√2,3√2).再问:边长是6再答:正方形的边长是6,则其对角线AC=6√2.因为,AC^2=AB^2+BC^2.=6^2+6^2.=36

如图,正方形ABCD的边长为3,以顶点A为原点,且有一组邻边与坐标轴重合,求出正方形ABCD各个顶点的坐标.

在正方形中,AB=BC=CD=AD=3,AB∥CD,AD∥BC,以顶点A为原点,且有一组邻边与坐标轴重合,则BC平行于y轴,CD平行于x轴,所以点A的坐标为(0,0),点B的坐标为(3,0),点C的坐

分可以加!如图,四边形ABCD为边长是a的正方形,分别以点A、B、C、D

如图,过E作EI⊥CD于I则EI=1/2AD=1/2EC∴∠ECD=30°同理,∠FCB=30°∴∠ECF=30°∴弧EF=30°/180°*π*a=1/6aπ∴阴影部分周长为2/3aπ