如图正方形abcd的边长为2根号2,对角线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:15:18
① EF=AF.证明: 如图,过E作BA的延长线的垂线EG,垂足为G.已知 EF^2+(FA+2)^2=ED^2=(2*2^1/2)^2  
1.2.3.都正确1.作ER⊥CD于R,MS⊥BC于S易证Rt△EFR≌Rt△MGS∴EF=MG2.AE=√3EM=2FM=2MG=4∴FG=2√53.当E在A点时,P为正方形中心当E运动到B点时,P
再问:对称中心是什么?再答:
(π(派)-2)/2
1利用割补法,两个正方形重叠部分的面积为12、方法相同,面积是1
再问:这是初一的数学题,再问:再问:求解!再答:连接BD;因为BC=CD,而且角C=90,所以:角CDB=角CBD=45;而角A=22.5,所以角ABC=67.5,所以:角ABD=22.5;因为A=2
“w472”:正方形的面积=a²空白的半圆部份面积=(0.5a)²×3.14÷2=0.3925a²空白的三角形部份面积=a²-a²×3.14÷4=a&
过点P作PE⊥DC于点E,∵△PBC为等腰三角形,∴P在线段BC的垂直平分线上,∴PE=12BC=1,∴△CDP的面积为:12×2×1=1.故答案为:1.
有两种情况:1,三角形EAD相似于三角形NCM2,三角形EAD相似于三角形MCN先看第一种情况,AE=EB=1,AD=2,根据勾股定理,ED=根号5根据三角形相似定理,ED/MN=AD/MC可以得出C
(1)∵四边形ABCD是正方形,E,F分别为BC,AD的中点∴DF=BE,DF∥BE∴四边形BEDF是平行四边形∴DE∥BF∴异面直线PB和DE所成的角为∠PBF∵BC⊥CD,PD⊥BC,PD与CD相
设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2
(1)梯形ADGF的面积=12(GF+AD)×GD=12(a+b)•a=a(a+b)2(2)三角形AEF的面积=12×AE•EF=a(b-a)2(3)三角形AFC的面积=S□ABCD+S□AFGD-S
1.阴影部分为平行四边形,高为a'd,底为aa'=x,x(2-x)=1,x=1再问:那第二题呢?再答:没说是什么类型方程吗再问:方程是x^2-2bx+a-4b=0再答:2.根的判别式化简后b^2+4b
晕可以将oc连接,看不是分割成两部分了吗?由于o是正方形ABCD的对角线交点,设oe交bc于h,og交cd于j,obh等于ocj,那么图中阴影部等于三角形obc(即正方形ABCD的4分之一)啊懂了吧?
三角形的另一面积公式S△=1/2absinc,其中c是a、b边的夹角.S△BPC=1/2*1*1*sin60°=(根号3)/4,S△PDC=1/2*CD*h=1/2*1*1/2=1/4(其中h为CD边
dh=3过f做cd的垂线交cd于o∵cf=6角fcd=60°∴co=3∴do=3∴角ofd=30°∴角dfe=30°∴fd是角ofe的平分线∴hd=do=co=3
如图,⑴ E.F是CD,DA的中点,A1D⊥D1D FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1
左边梯形ABCG面积为3/4a^2右边三角形GCE面积1/8a^2三角形ABE面积3/4a^2所以,阴影面积为1/8a^2