如图正方形abcd点p是对角线cb上运动

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:04:24
如图正方形abcd点p是对角线cb上运动
如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.

证明:(1)∵AC是对角线∴∠ACD=∠ACB=45°∵PC=PC,BC=DC∴△BCP≌△DCP(2)∵PE=PB∴∠PBC=∠PEC∵△BCP≌△DCP∴∠PBC=∠PDC∴∠PBC=∠PDC=∠

如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,点P是正方形ABCD对角线BD上的一点,PE垂直BC,PF垂直CD,垂足分别为E、F.求证:AP=EF

证明:连接PC.∵四边形ABCD是正方形∴AD=CD又∵BD是正方形ABCD的对角线∴∠ADB=∠CDB=90°在△ADP与△CDP中AD=CD{∠ADB=∠CDBPD=PD∴△ADP≌△CDP(SA

已知,如图1,在正方形ABCD中,P是对角线AC上点,E在BC延长线上,且PE=PB

(1)证明:设CD与PE相交于O因为四边形ABCD是正方形所以CD=CB角DCP=角BCP角BCD=90度因为CP=CP所以三角形DCP和三角形BCP全等(SAS)所以角PDC=角PBC因为PB=PE

已知:如图,点P是正方形ABCD的对角线AC上一点,过点P作EF DP,交AB于点E,交CD于点G,交BC的延长线于点F

条件打漏DP⊥AC.,作EH∥BC 连接PB.⑴∠PFB=PEH=90º-∠EHP=90º-∠ADH=∠GDP=∠CBP  ∴PD=PB=PF⑵&nb

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PE⊥PB,交直线CD于点E,如图1,当点P与

(1)过p做PM垂直bc,PN垂直DC,角PEC=角PBC(PBCE,四点共圆,或者转角也可以)又pn=pm所以三角形pmb全等三角形pne(2)AF+CE=EF三角形cbe逆时针旋转90°,证三角形

如图 正方形abcd的边长1+根号3,△ABE是等边三角形,点E在正方形ABCD内,点P是对角线AC上的动点,当PD+P

因为PD始终等于PB,PD+PE的和最小即为PB+PE的和最小,根据两点之间线段最短,P应在AC与BE交点处,过P作PF垂直AB,垂足为F,设PF为x,角FAP为45°,所以AF=PF=x.直角三角形

如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE

使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于

如图,正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,正方形ABCD的面积为10,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

∵ABCD是正方形∴AC⊥BD AB=AD=A=BC=CD=√10∵△ABE是等边三角形∴AB=BE=AE=√10要使PD+PE的和最小以AC为对称轴,做D的对称点,由于BD⊥AC所以D的对

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

正方形ABCD中,点O是对角线AC的中点,P为对角线AC上一动点,过点P作PF⊥DC于点F.如图1,当点P与点O重合时,

连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1

初三证明题:如图,正方形ABCD中,点O是对角线AC的中点,点P为对角线AC上一动点,过点P做PF⊥DC于F,如图1,

(1)连接BE、PD,过点P作AD的垂线,垂足为G,①因为点O为正方形ABCD对角线AC中点,∴点O为正方形中心,且AC平分∠DAB和∠DCB,∵PE⊥PB,BC⊥CE,∴B、C、E、P四点共圆,∴∠

如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,求PE+PB的最小值

连接DE,交AC于点P,连接BD∵点B与点D关于AC对称∴DE的长即为PE+PB的最小值∵AB=4,E是BC的中点∴CE=2在Rt△CDE中DE=√(CD^2+CE^2)=√(4^2+2^2)=2√5

如图,在边长为2的正方形ABCD中,点Q是BC中点,点P为对角线AC上一动点,连接PB、PQ,

BQ=BC/2=1,即BQ为定值.∵点B和D关于AC对称,则PD=PB.∴PB+PQ=PD+PQ,故当点P在线段DQ上时,PD+PQ最小.DQ=√(CQ²+CD²)=√(1+4)=

如图,点P是边长为1的正方形ABCD的对角线AC上一点,点E在边BC上,且PE=PB.求证:

因为PB=PE,所以∠PBE=∠PEB因为正方形ABCD,所以∠PCD=∠PCB,PC=PC,BC=CD,所以可证得△PCB全等于△PCD所以得∠PDC=∠PBE所以得∠PDC=∠PEB因为∠PEB+

如图,P是正方形ABCD对角线BD上一点

连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P