如图正方形ABCD中,AE=BF,若CD=4,且DG^ GE^=18,则be=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 21:15:26
如图正方形ABCD中,AE=BF,若CD=4,且DG^ GE^=18,则be=
如图已知,正方形ABCD中,AE=BF,判断四边形ADHG的形状并证明

解∵在正方形ABCD中∠ABE=∠BCF=90°AB=BC,又∵AE=BF∴AE^2-AB^2=BF^2-BC^2,∴BE^2=CF^2∴BE=CF∴△ABE≌△BCF(SSS)∴∠BAG=∠CBH∵

如图在正方形ABCD中,AE⊥BF,垂足为O.求证<1=<2.

在正方形ABCD中∠ABE=∠ABO+∠2=90°∵AE⊥BF∴∠AOB=90°∴∠1+∠ABO=90°∴∠1=∠2(同角的余角相等)

如图,在正方形ABCD中,DE AC,AE=AC,交CD于F,求证CE=CF

先说几个角.令∠EAC=∠1,∠EDC=∠4,∠DCA=∠3,∠DEA=∠2,∠EFC=∠5,∠AEC=∠6,∠ECF=∠7.∵∠2+∠4=∠5,AE=AC∴∠3+∠7=∠6,180°-∠7-∠5=∠

如图在正方形ABCD中,AB=12,点E是DC上的动点,(E不与点D、C重合),AE的垂直平分线FP分别交AD、AE、B

1)过点G作GQ⊥AD于Q,则QG=AB=AD=12,∠FQG=∠D=90°∵∠QFG+∠DAE=∠AED+∠DAE=90°,∴∠QFG=∠AED∴△QFG≌△AED∴FG=EA,FQ=DE=m∵FP

如图,正方形ABCD中,E为BC上一点,AF平分∠DAE,求证:BE+DF=AE

在CB延长线上截取BG=DF,连接AGBG=DF,再问:

如图,在正方形ABCD中,CE=DF.求证:(1)AE=BF;(2)AE⊥BF

∵四边形ABCD为正方形∴AB=CD=CB=AD,∠D=∠DAB=90°又因为CE=DF所以CD-CE=AD-DF即DE=AF在△EDA与△FAB中DE=AF∠D=∠DABAD=BA所以△EDA≌△F

已知:如图,在正方形ABCD中,点E,F分别在BC和CD上,AE=AF.

(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵AE=AF,∴Rt△ABE≌Rt△ADF,∴BE=DF(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA=∠DCA=4

如图,在正方形ABCD中,AE=BF,说明ED⊥AF理由

证明:∵正方形ABCD∴AB=AD,∠BAD=∠ABC=90∴∠BAF+∠AFB=90∵AE=BF∴△ABF≌△DAE(SAS)∴∠DEA=∠AFB∴∠BAF+∠DEA=90∴∠AGE=180-(∠B

如图在正方形ABCD中,AE=EB,AF=1/4AD,求证:CE垂直于EF

连接CF,设AF=1则DF=3,AE=BE=2,正方形ABCF的边长为4CE^2=BE^2+BC^2=20EF^2=AF^2+AE^2=5CF^2=DF^2+CD^2=25所以CF^2=CE^2+EF

如图,正方形ABCD中,AE⊥BF,求证:EO=FO

题目有问题,假设F与D重合,那么,E与O重合,EO为0,FO是BD的一半,FO不等于EO.所以题中给出的命题必须限定点F的位置,即FC必须是个特殊值,但显然题目并没有给出这个条件.【美丽心情】团队,真

如图,正方形ABCD中,AE⊥BF于点P,试说明AE=BF(1)

(1)无论E.F点在何位置上,要证明AE=BF,即证明三角形AFB=三角形ADE由于角ADC和角ABC都是直角,加上AD=AB所以只要证明角DAE=角ABF即可有因为AE垂直于BF所以角FAE=角AB

如图,已知在正方形ABCD中,AE=EB,AF=1/4AD,求证CF⊥EF

已知在正方形ABCD中,AE=EB,AF=1/4AD,求证CE⊥EF(原结论不对)证明:设AF=x,则AD=CD=BC=AB=4x,FD=3x,AE=EB=2x. 以下有两种证明方法.证明方

如图,ABCD是边长为1的正方形,EFGH是内接于ABCD的正方形,AE=a,AF=b,若SEFGH=23,则|b-a|

在△AEF和△DHE中,EH=EF∠EAF=∠DAE∠DEH=∠AFE,∴△AEF≌△DHE,∴AF=DE,∵DE+AE=1,∴a+b=1,∵a2+b2=23求解得:a=1+332,b=1−332,∴

已知:如图,在正方形ABCD中,E.F分别为BC,CD的中点.求证:AE=AF

∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A

如图,在正方形ABCD中,AB=4,AE=2,DF=1,图中有几个直角三角形?

解∶由题意可知ΔADE与ΔDFE和ΔBFC都是直角三角形,且AB=BC=CD=AD=4,AE=DE=2,DF=1,∴CF=DC-DF=3∵在RtΔABE中BE²=AB²+AE

如图,已知在正方形ABCD中,BE=5,MN为AE的中垂线,正方形ABCD的边长为12,求MN的长

链接EN,设EN=x,则EN=AN=x,BN=12-x因为三角形ENB是直角三角形,所以5^2+(12-x)^2=x^2x=169/24由于AE是直角三角形ABE斜边,算出长度等于13,所以ON(O是

如图,已知在正方形ABCD中,∠EDF=45°,求证:EF=AE+CF

延长BC至H,使得CH=AE,连接DH在三角形DCH和三角形DAE中,可以证明这两三角形全等,则:∠HDC=∠ADE----------------------------(1)DE=DH------