如图正方形ABCD E在BC上 AE垂直GF 求证BE=BG CF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:50:54
如图正方形ABCD E在BC上 AE垂直GF 求证BE=BG CF
图在下面1正△ABC和正方形DEFG如图放置点E,F在BC上点D,D分别在边AB,AC上求BC比EF2在提醒ABCD中A

第一题,角BDE等于30度,可知当BE为1时,DE等于“根号3”..BE=FC=1,EF=DE=“根号3”第二题,相似三角形“角角角原理”,可推知DK垂直于CK再问:第一题为什么BE为1再答:假设法

如图,正方形ABCD边长为12cm,在边BC上有一点P,BP=5cm,折叠这个正方形,使A点落到P点上,求折痕EF的长.

过点F作FG⊥AB于G∵正方形ABCD∴AD=AB,∠BAD=∠B=90∴AP=√(AB²+BP²)=√(144+25)=13∵点A沿EF折叠至P∴EF⊥AP∴∠BAP+∠AEF=

如图,正方形ABCD中,E、F分别在BC、CD上,EF=BE+DF.

⑴证明:把⊿ABE绕A逆时针旋转90º,到达⊿ADG∵EF=BE+DFFG=FD+BE∴FG=FE又 AE=AGAF=AF∴ΔAFE≌ΔAFG ﹙SSS﹚∴∠FAE=&#

如图,正方形ABCD边长为4厘米,长方形EDGF的边过A点,G在BC上.

由△ADG面积为既是S正方形的一半又是长方形的一半,又S△ADG=4*4/2=8.故,长方形的长为8*2/5=3.2

如图,正方形ABCD的顶点A、D和正方形JKLM的顶点K、L在一个以5为半径的圆O上,点J、M在线段BC上,若正方形AB

由题意:半径AO=OK=5有垂径定理可知,AE=AD/2=3所以在三角形AOE中,用勾股定理得OE=4所以OF=AB-OE=6-4=2设正方形JKLM的边长为x同样由垂径定理知KG=x/2在三角形OK

如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°.AB=BC,AE=DE,在BC,DE上分别找一点M,

过程:∠AMN+∠ANM=120°延长AB到A'使BA'=AB,延长AE到A''使AE=EA'',那么A'A''与BC,ED的交点即为所求的M和N,∠AMN+∠ANM=2∠A'+2∠A''=2(180

如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90 AB=BC,AE=DE,在BC,DE上分别找一点M,N

作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,理由:此时,MB为AA'的的垂直平分线,MA'=MA,同理:NA=NA

如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,

∠AMN+∠ANM=120°延长AB到A'使BA'=AB,延长AE到A''使AE=EA'',那么A'A''与BC,ED的交点即为所求的M和N,∠AMN+∠ANM=2∠A'+2∠A''=2(180-∠B

已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM

设矩形PNDM的边DN=x,NP=y,则矩形PNDM的面积S=xy(2≤x≤4),易知CN=4-x,EM=4-y,且有NP−BCCN=BFAF(1分),即y−34−x=12,∴y=-12x+5(2分)

如图,正方形ABCD的边长为a,点E、F分别在边BC、CD上,且∠EAF=45°,求△CEF的周长

如图,延长CB至G,使BG=DF∵AB=AD,∠ABG=∠D=90°∴△ABG≌△ADF∴∠BAG=∠DAF,AF=AG∵∠EAF=45°∴∠GAE=∠BAG+∠BAE=∠DAF+∠BAE=45°∴△

如图,正方形ABCD的边长为a,点E,F分别在BC,CD上,且∠EAF=45°,求△CEF的周长

如图,延长CB至G,使BG=DF∵AB=AD,∠ABG=∠D=90°∴△ABG≌△ADF∴∠BAG=∠DAF,AF=AG∵∠EAF=45°∴∠GAE=∠BAG+∠BAE  &nbs

已知:如图,点A'、B'、C'、D'分别在正方形的边AB、BC、CD、DA上,且AA'=BB'=CC'=DD'.求证:四

设AB长为1,AA'长为x那么,正方形ABCD的面积就是1,而A'B'C'D'的面积是A'D'的平方,根据勾股定理就可以知道A'B'C'D'的面积就是AA'的平方加上AD'的平方那么就能列式:x^2+

已知:如图,点A’、B’、C’、D’分别在正方形的边AB、BC、CD、DA上,且AA’=BB’=CC’=DD’,求证:四

设AB长为1,AA'长为x那么,正方形ABCD的面积就是1,而A'B'C'D'的面积是A'D'的平方,根据勾股定理就可以知道A'B'C'D'的面积就是AA'的平方加上AD'的平方那么就能列式:x^2+

如图,已知正方形abcd的边长为2,动点p在正方形abcd的边ab或bc上,它从a点出发,沿a→b→c运动.当点p经过的

当P在边AB上时,△APC的面积=1/2,则高BC=2,所以底边AP=1/2当P在边BC上时,△APC的面积=1/2,则高AB=2,所以底边PC=1/2.所以AP=4-1/2=7/2

如图正方形abcd边长4cm长方形edgf边ef过a点,g点在bc上,若dg=5cm,求edgf的

DG=5,DC=4由勾股定理知GC=3∴BG=1∴AG²=1+4²=17设AE长为xcm,故AF=(5-x)cm长方形DEFG宽相等,故FG²=17-(5-x)²

如图 在五棱锥P-ABCDE中,PA⊥平面ABCDE,AB平行CD,AC平行ED,AE平行BC,∠

如图手机提问的朋友在客户端右上角评价点【评价】,然后就可以选择【满意,问题已经完美解决】了

如图正方形DEFG的边EF在三角形ABC的边BC上 顶点D G分别在边AB AC上 已知在三角形A

∵DEFG是正方形∴DG=DE=GF=EFDG∥EF(BC)∴△ADG∽△ABC∴DG/BC=AP/AH∵AH⊥BC∴PH=DE=DG∴DG/60=(40-DG)/40再答:DG=24∴S正方形=24

如图,点ABCDE在数轴上,点A表示数-5,点E 表示数9,且AB=BC=CD=DE,则图中点P接近下列数几?

应该是3由AB=BC=CD=DE可知B-1.5C2D5.5P在CD之间,靠近C,所以是3喽

如图,P是正方形ABCD的对角线AC上一点,E在BC上,且PB=PE

提示:先证明△BPC≌△DPC得到PB=PD=PE作PM⊥BC于M,PN⊥CD于点N再证△PEM≌△PND可得(1)PD=PE(2)PD⊥PE

如图,正方形ABCD的边BC在等腰直角三角形PQR的斜边QR上,其余两个顶点A,D在PQ,PR上,则PA:PQ等于(

∵四边形ABCD是正方形,∴△PAD、△ABQ、△CDR是等腰直角三角形∴△PAD∽△PQR∴PA:PQ=AD:QR设正方形ABCD的边长是a,则AD=a,BQ=CR=BC=a,QR=3a因而PA:P