如图所示抛物线Y=AX平方 BX C的开口向下
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 16:17:37
由抛物线y=ax平方+bx+c与抛物线y=2x平方的形状相同,得,a=2,由顶点坐标(2,-1),由顶点式,∴y=2(x-2)^2-1=2x^2-8x+7
抛物线开口向下,有a<0,得不出{x|ax平方+bx+c<0}=空集.故原命题与逆否命题为假逆命题为假,若{x|ax^2+bx+c<0}=空集,则Max(y)≥0,开口向上否命题为假
﹙1﹚抛物线y=ax²+bx+c的对称轴﹔就是图像中X轴上-1和4的中间点.X=(-1+4)/2=3/2﹙2﹚ax²+bx+c>0的解集﹔就是图像中X轴上方的部分X4﹙3﹚ax
题目不全,方程中的+-号看不见
/>(1)依题意,得a-b+c=-6①a+b-c=-2②4a+2b+c=9③由②-①得2b-2c=4④由③-4×②得-2b+5c=17⑤由④+⑤得3c=21c=7代入④得2b=4+2c=4+2×7=1
1、过(0,2),(4,0),(5,-3)所以2=0+0+c(1)0=16a+4b+c(2)-3=25a+5b+c(3)c=2(3)×4-(2)×5100a-80a-2=-12a=-1/2b=(-16
a>0(开口向上)b>0(对称轴在y轴左侧,ab同号)c>0(与y轴交点在x轴上方)b²-4ac0(x=1时y>0)a-b+c>0(x=-1时y>0)4a+4b+4c>0(4倍a+b+c)(
C将该抛物线下移5个单位,得y=ax²+bx+c-5顶点坐标为(-1,0)所以y=ax²+bx+c-5与x轴只有一个交点所以ax²+bx+c-5=0有两个相等的实数根
有两个不相等的实数根,且一正一负ax平方+bx+c-1=0就是ax平方+bx+c=1即y=1,从图像上可以看出,y=1,y轴两侧都有相应的x存在.
∵有最高点∴a<0①;∵最大值是4,∴(4ac-b∧2)/4a=4②;再代入(3,0)(0,3)得9a+3b+c=0③;c=3④;①②③④即可得解再问:我奇迹般的比你先做出来,不过还是谢谢你再答:呵呵
(1)抛物线y=ax的平方+bx+c的顶点坐标为(2,4)-b/2a=2b=-4ay(2)=4a+2b+c=4c=4+4a(2)S三角形ODE:S三角形OEF=1:3DE:EF=1:3xE:xF=1:
解(1)由题意可以知道:该抛物线过(-1,0),(5,0),(0,-2.5)把这三个点代入抛物线方程可得:a-b+c=0;25a+5b+c=0;c=-2.5解之得:a=1/2;b=-2;c=-2.5所
交点都给你了就都好办与x轴的交点横坐标就是(1)的解x=1和3开口向下也就是x在1——3间二次函数在第一象限y为正(2)1
从图中可以看出,抛物线的对称轴为:x=3因此,抛物线可以表示为:y=a(x-3)²+k将(1,0)、(4,2)代入上式:0=a(1-3)²+k4a+k=0.(1)2=a(4-3)&
再问:老师,有两个问,一个求解,一个求解集,A(-2,4)B(8,2)再答:这是典型的数形结合题目。1、第一题是求方程的实际就是抛物线与直线的的交点横坐标。所以x=-2,x=82、求不等式解集,ax平
解题思路:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-b/2a,4ac−b24a),对称轴直线x=-b/2a解题过程:
a>0ax²+bx+c=0的解集为{[(-b+√(b^2-4ac)]/2a,[(-b-√(b^2-4ac)]/2a}x²+bx+c>0的解集为{{x>[(-b+√(b^2-4ac)
抛物线y=x²+3向左平移1个单位后得到y=(x+1)²+3=x²+2x+4所以a=1,b=2,c=4
当a=b=1,抛物线方程即为y=3x^2+2x+c△=sqrt(4-12c)=2*sqrt(1-3c)y与x轴交点为:(-2±2*sqrt(1-3c))/(2*3)=(-1±sqrt(1-3c))/3
将A、B点坐标代入抛物线方程,得c=1,4a+2b+c=-3即2a+b=-2,又因为抛物线关于x=-1对称,则也过A'(-2,1),代入得2a=b,综上,a=-1/2,b=-1,c=1.抛物线解析式为