如图所示在正方形ABCD中M为BC上一点F是AM的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:16:46
如图所示在正方形ABCD中M为BC上一点F是AM的中点
在如图所示的几何体中,四边形ABCD为正方形,EA⊥平面ABCD,EF//AB,AB=4,AE=2,EF

第一问,用相似推出MN=1,和EF平行且相等,有平行四边形EFNM,FN//EM,EM//面FBC.第二问.还有第三问,你确定这是高一的题么.好像要用到空间向量的说再问:这是高一的题呀。。空间向量在必

在如图所示的几何体中,四边形ABCD是正方形,MA垂直面ABCD,PD平行MA,E,G,F分别为MB,PB,PC中点

证明:因为:E,G,F分别是BM,PB,PC的中点所以:EG∥PM,且EG=(1/2)PM,GF∥BC,且GF=(1/2)BC由于:BC∥AD,BC=AD=DP所以:GF∥AD而:AD,PM都在平面A

在如图所示的几何体中,四边形ABCD为正方形,EA⊥面ABCD

作AH⊥FB,(H在FB上),连DH,ABCD为正方形,EA⊥面ABCD,AD⊥BAEF面,FB⊥AD,DH⊥AD,∠AHD是二面角A-FB-D,作EG∥FB,(G在AB上),△ABH∽△EGA,AH

在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD为正方形,M为PC的中点,PD=AB,求证PA平行平面MBD

设O=AC∩BD则OM∥=PA/2﹙中位线﹚OM∈平面MBD.A不在平面MBD∴PA∥平面MBD

如图所示,正方形ABCD中,对角线AC、BD交于点O,点M、N分别为OB、OC的中点,则cos∠OMN的值为(  )

∵正方形ABCD中,对角线AC、BD交于点O,∴∠OBC=45°.∵点M、N分别为OB、OC的中点,∴MN∥BC.∴∠OMN=∠OBC=45°.∴cos∠OMN=cos45°=22.

如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=2,M是线段

(Ⅰ)连接D1O,如图,∵O、M分别是BD、B1D1的中点,BD1D1B是矩形,∴四边形D1OBM是平行四边形,∴D1O∥BM.(2分)∵D1O⊂平面D1AC,BM⊄平面D1AC,∴BM∥平面D1AC

如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长2的正方形,0为AC与BD的交点,B1B=根号2,M是线

这个好几种方法呢,选择最简单的吧.过点B作BE⊥AB1交AB1于点E,连接CE.∵BC⊥平面ABB1,∴BC⊥AB1,∴AB1⊥平面BEC,∴AB1⊥CE∴∠CEB即为所求角RT△ABB1内,AB=2

正方形ABCD的边长是2,在如图所示的平面直角坐标系中画出这个正方形!

将4个点连起来就行了,每个点到顶点的距离为根号2. 

如图所示,ABCD为正方形.

(1)DP=DA,证明:连接AP,BP,∵点P是△ABC内心,∴∠BAP=∠CAP,∵四边形ABCD是正方形,∴∠ABP=∠CBP=45°,∴P在对角线BD上,∴∠DPA=∠DBA+∠BAP=45°+

如图所示,正方形导线框ABCD、abcd的边长均为L ,电阻均为R ,质量分别为2m和m,它们分别系在一跨过两个

线框进行匀速运动,有F安1+mg=2mg   F安1,即abcd刚进入磁场时受到的安培力   E1=BLV1 ,I=E/R&nbs

如图所示,边长为L的正方形区域abcd内存在着匀强磁场.质量为m,电荷量为q的带电粒

设粒子的入射速度为v,粒子从a点到c点这一过程,由牛顿第二定律有:qE=ma,由运动学公式有:L=at^2/2,L=vt,设粒子在a点和c点的动能分别为Eka和Ekc,由动能定理有:qEL=Ekc-E

如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN的周长为2.

第一题:45°第二题:接2-2(x+y)+xy=0设x+y=a,则xy=2a-2所以x、y是一元二次方程A平方-aA+2a-2=0的两个根.根据△大于等于0,算出a-4的平方大于等于8因为0小于a小于

如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN的周长为2.

(1)如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△ADN,故AL=AN,∠1=∠2,∠NAL=∠DAB=90°又∵MN=2-CN-CM=DN+BM=BL+BM=ML∴△AMN≌△AML∴∠

如图所示,在正方形ABCD中,E、F分别为AD、DC的中点,BF、CE相交于点M.求证AM等于AB.

连结B、E易证EC⊥BF∴A、B、M、E四点共圆∴∠ABE=∠AME∵∠AMB=90-∠AME∠ABM=90-∠FBC∠FBC=∠ABE=∠AME∴∠ABM=∠AMB∴AM=AB

在平面直角坐标系中,正方形ABCD的位置如图所示

考点:相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.专题:规律型.分析:先根据两对对应角相等的三角形相似,证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1

如图所示,在正方形ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,q求证B1D⊥平面PAC

取底面ABCD对角线交点O.连结PO、B1O,PB1,B1D1,因AP=PC,三角形APC是等腰三角形,故PO⊥AC,同理B1O⊥AC,故

在一个正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分

∵线段D1Q与OP互相平分,且MQ=λMN,∴Q∈MN,∴只有当四边形D1PQO是平行四边时,才满足题意,此时有P为A1D1的中点,Q与M重合,或P为C1D1的中点,Q与N重合,此时λ=0或1故选C.

如图所示,在正方形ABCD中,M为BC中点,N为AD上的一点,且AN=1/4AD,试猜测△CMN是什么三角形,请证明结论

M应在AB上,否则,△CMN是钝角三角形∵ABCD是正方形∴∠A=∠D=∠B=90°AB=BC=CD=AD∵AN=1/4AD    M为AB的中点∴DN=AD-

如图所示,在一个边长为1的大正方形中有两个小正方形,他们的面积分别为m n.是m大还是n大

如图,∵S△BEF=S△AEF,S△BEG=S△CEG,∴S1=1/2*S△ABC,∵S△JHK=S△JAK S△HIJ=S△CIH,∴S2=1/2*梯形HIJK,又∵S△ABC=S△ADC

在正方形ABCD中,M是AB中点,图中阴影部分面积为24,正方形的边长为多少

设AC、DM的交点是P,因为AM//DC,所以角PDC=角PMA,角DCP=角MAP,所以三角形DPC相似于三角形MPA所以它们的高之比h1:h2=1:2设正方形的边长为a,h1=1/3a,h2=2/