如图所示在正方形ABCD中M为BC上一点F是AM的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:16:46
第一问,用相似推出MN=1,和EF平行且相等,有平行四边形EFNM,FN//EM,EM//面FBC.第二问.还有第三问,你确定这是高一的题么.好像要用到空间向量的说再问:这是高一的题呀。。空间向量在必
证明:因为:E,G,F分别是BM,PB,PC的中点所以:EG∥PM,且EG=(1/2)PM,GF∥BC,且GF=(1/2)BC由于:BC∥AD,BC=AD=DP所以:GF∥AD而:AD,PM都在平面A
作AH⊥FB,(H在FB上),连DH,ABCD为正方形,EA⊥面ABCD,AD⊥BAEF面,FB⊥AD,DH⊥AD,∠AHD是二面角A-FB-D,作EG∥FB,(G在AB上),△ABH∽△EGA,AH
设O=AC∩BD则OM∥=PA/2﹙中位线﹚OM∈平面MBD.A不在平面MBD∴PA∥平面MBD
∵正方形ABCD中,对角线AC、BD交于点O,∴∠OBC=45°.∵点M、N分别为OB、OC的中点,∴MN∥BC.∴∠OMN=∠OBC=45°.∴cos∠OMN=cos45°=22.
(Ⅰ)连接D1O,如图,∵O、M分别是BD、B1D1的中点,BD1D1B是矩形,∴四边形D1OBM是平行四边形,∴D1O∥BM.(2分)∵D1O⊂平面D1AC,BM⊄平面D1AC,∴BM∥平面D1AC
这个好几种方法呢,选择最简单的吧.过点B作BE⊥AB1交AB1于点E,连接CE.∵BC⊥平面ABB1,∴BC⊥AB1,∴AB1⊥平面BEC,∴AB1⊥CE∴∠CEB即为所求角RT△ABB1内,AB=2
将4个点连起来就行了,每个点到顶点的距离为根号2.
(1)DP=DA,证明:连接AP,BP,∵点P是△ABC内心,∴∠BAP=∠CAP,∵四边形ABCD是正方形,∴∠ABP=∠CBP=45°,∴P在对角线BD上,∴∠DPA=∠DBA+∠BAP=45°+
线框进行匀速运动,有F安1+mg=2mg F安1,即abcd刚进入磁场时受到的安培力 E1=BLV1 ,I=E/R&nbs
设粒子的入射速度为v,粒子从a点到c点这一过程,由牛顿第二定律有:qE=ma,由运动学公式有:L=at^2/2,L=vt,设粒子在a点和c点的动能分别为Eka和Ekc,由动能定理有:qEL=Ekc-E
第一题:45°第二题:接2-2(x+y)+xy=0设x+y=a,则xy=2a-2所以x、y是一元二次方程A平方-aA+2a-2=0的两个根.根据△大于等于0,算出a-4的平方大于等于8因为0小于a小于
(1)如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△ADN,故AL=AN,∠1=∠2,∠NAL=∠DAB=90°又∵MN=2-CN-CM=DN+BM=BL+BM=ML∴△AMN≌△AML∴∠
连结B、E易证EC⊥BF∴A、B、M、E四点共圆∴∠ABE=∠AME∵∠AMB=90-∠AME∠ABM=90-∠FBC∠FBC=∠ABE=∠AME∴∠ABM=∠AMB∴AM=AB
考点:相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.专题:规律型.分析:先根据两对对应角相等的三角形相似,证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1
取底面ABCD对角线交点O.连结PO、B1O,PB1,B1D1,因AP=PC,三角形APC是等腰三角形,故PO⊥AC,同理B1O⊥AC,故
∵线段D1Q与OP互相平分,且MQ=λMN,∴Q∈MN,∴只有当四边形D1PQO是平行四边时,才满足题意,此时有P为A1D1的中点,Q与M重合,或P为C1D1的中点,Q与N重合,此时λ=0或1故选C.
M应在AB上,否则,△CMN是钝角三角形∵ABCD是正方形∴∠A=∠D=∠B=90°AB=BC=CD=AD∵AN=1/4AD M为AB的中点∴DN=AD-
如图,∵S△BEF=S△AEF,S△BEG=S△CEG,∴S1=1/2*S△ABC,∵S△JHK=S△JAK S△HIJ=S△CIH,∴S2=1/2*梯形HIJK,又∵S△ABC=S△ADC
设AC、DM的交点是P,因为AM//DC,所以角PDC=角PMA,角DCP=角MAP,所以三角形DPC相似于三角形MPA所以它们的高之比h1:h2=1:2设正方形的边长为a,h1=1/3a,h2=2/