如图所示ab是圆o的直径 de垂直ab于点d 交弦ac于点e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:32:46
如图所示ab是圆o的直径 de垂直ab于点d 交弦ac于点e
如图,DE是圆O的直径,弦AB⊥CD垂足为C,若AB=6,CE=1则OC=() CD=()

∵DE是⊙O的直径∴AC=BC=1/2AB根据相交弦定理AC*BC=CE*CDCD=AC*BC/CE=3*3/1=9AB=CD+CE=9+1=10OC=1/2AB-CE=5-1=4有没办法证明DE与C

AB是圆o的直径,以OA为直径的圆o,与圆o的弦AC相交于点D,DE垂直于OC,垂足为E,求证:DE是圆o的切线.

连接oD因为:OA=OC,所以:角OAC=OCA又oA=oD,所以:角oAD=oDA角OAC=oAD,所以:角OCA=oDA即:oD//OC又:DE垂直OC,所以:角EDo=90即DE是圆o的切线.

如图所示 AB为圆O的直径 D是弧BC的中点 DE⊥AC交AC的延长线于点E 圆O的切线BF交AD的延长线于点E

1连结OD∵OA=OD∴∠OAD=∠ADO∵D是弧BC的中点∴∠CAD=∠OAD∴∠CAD=∠ADO∴OD‖AE又∵DE⊥AE∴OD⊥DE∴DE是圆O的切线2过D作DH⊥ABH为垂足∵D是弧BC的中点

圆的切线怎么证明AB是圆O的直径,AB=AC,BC与圆O交于点D,且DE垂直AC求证 DE是圆O的切线另一题:AB是圆

证切线有三种办法①与圆只有一个交点的直线(不太常用)②有已知交点,连半径,证垂直(根据切线判定定理)③无已知交点,作垂直,证半径(根据直线与圆的位置关系,d=r)第一题已知交点D,所以想到连半径所以只

如图,ab,cd是圆o的直径,弦ce‖ab,b是弧de的中点么

∵AB∥CE,∴弧AC=弧BE,∵∠AOC=∠BOD,∴弧AC=弧BD,∴弧DB=弧EB,即点B是弧DE的中点.

关于圆的切线应用题如图所示 AB是○O的直径,BD是○O的弦,延长BD到C,使CD=BD,连接AC,过点D作DE⊥AC,

图形如图1、连接AD,AD⊥BC,又因为BD=CD,AD=AD故:AC=AB2、DE⊥AC,三角形CDE与三角形CAD相似,∠CDE=∠CAD=∠BAD=∠ADO故∠CDE+∠EDA=∠ADO+∠ED

2:已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.

1,易证DO//AC,因为DO为为三角形BCA两腰的等分线,所以由DE⊥AC→DE⊥DO,故DE是圆的切线.2,连AD,则AD是BC的中垂线,所以△ABD≌△ACD,所以∠ABD=∠ACD=30°,C

如图,已知AB是圆O的直径,AC切圆O于点A,CB交圆O与D,DE切圆O于D,BE⊥DE,垂足为E,BD=10,

韦达定理:关于x的一元二次方程ax²+bx+c=0的两根x1,x2满足x1+x2=-b/a,x1•x2=c/a设x²-2(m+2)x+2m&su

如图所示,已知三角形ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D做DE⊥AC于点E,求证DE是⊙O的切线

这个只需要证明角ODE是直角就可以了,AB=AC角ABC=角ACB且AD垂直AC所以角ADC=90°又因为DE垂直AC所以角AED=90°角A是公共角,所以有角ADE=角ACB=角ABCOA=OC所以

AB是圆O的直径AB是圆O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF,EO,若DE=

首先画图(都不给张图真是的)(1)连接DOCO=1/2OD,OD^2=CD^2+CO^2(1:2:√3知道么,因为CD是√3所以OD是2)那么半径就是2了(2)哪来的阴影?再问:忘插图片了,现在插好了

如图所示,AB是圆O的直径,弦AB,CD交于E,则CD\AB等于____________

角D=A,C=B三角形DEC相似于AEB,你的题目好象少条件的

如图,AB是圆O的直径,C是圆O上一点,D是弧AC中点,DE⊥AB垂足为E,AC分别与DE、DB相交于点F、G,则AF与

AF=FG,理由是:连接AD,∵AB是直径,DE⊥AB,∴∠ADB=∠DEB=90°,∴∠ADE=∠ABD,∵D为弧AC中点,∴∠DAC=∠ABD,∴∠ADE=∠DAC,∴AF=DF,∠FAE=∠DA

圆 切线 证明题如图AB是圆o的直径,圆o过BC的中点D,DE垂直AC,求证:DE是圆o的切线,

连接AD,OD,所以OD平行于AC,所以角ADO=角CAD,又因为,角CAD+角ADE=90度,所以角ADE+角ADO=角EDO=90度,所以OD垂直于ED,所以:DE是圆o的切线

如图所示AB是圆O的直径DE在圆O上AE,BD的延长线交于C且AB=AC求证BD=DE

证明:AB为直径所以∠ADB=90度因为AB=AC所以三角形BAC为等腰三角形(等腰三角形三线合一性质)所以BD平分∠BAC因为∠BAD=∠CAD所以弧BD=弧DE所以BD=DE

如图1,已知AB是圆O的直径,AC是圆O的弦,点D是优弧ABC的中点,弦DE⊥AB,垂足为F,DE交AC于点G.

小德德呢:证明:ME=MG成立,理由如下:如图,连接EO,并延长交⊙O于N,连接BC∵AB是⊙O的直径,且AB⊥DE∴弧AD=弧AE∵点D是优弧ABC的中点∴弧AD=弧DBC∴弧AE=弧DBC∴弧AC

如图所示,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作DE⊥AB于点E,连接AC,与DE交于点P.

DP=PE.证明如下:∵AB是⊙O的直径,BC是切线,∴AB⊥BC.∴DE∥BC,∴Rt△AEP∽Rt△ABC,得EPBC=AEAB.①又∵AD∥OC,∴∠DAE=∠COB,∴Rt△AED∽Rt△OB

如图,AB,DE是圆O的直径,弦AC‖DE,求证:弧BE=弧CE

证:连接OC∵AC‖DE∴∠BOE=∠OAC,∠OCA=∠COE∵OA=OC∴∠OAC=∠OCA∴∠BOE=∠COE∴弧BE=弧CE

已知:AB是圆O的直径,弦CD⊥AB于点G,E是直径AB上一点,直线DE交圆O于点F,

连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC

如图,已知AB是圆O的直径,AC是圆O的弦,点D是优弧ABC的中点,弦DE⊥AB,垂足为F,DE交AC于点G.

ME=MG成立,理由如下:如图,连接EO,并延长交⊙O于N,连接BC∵AB是⊙O的直径,且AB⊥DE∴弧AD=弧AE∵点D是优弧ABC的中点∴弧AD=弧DBC∴弧