如图所示,物体在离斜面底端5m处由静止开始下滑

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:44:03
如图所示,物体在离斜面底端5m处由静止开始下滑
如图所示,将一轻弹簧下端固定在倾角为θ的粗糙斜面底端,弹簧处于自然状态时上端位于A点.质量为m的物体从斜面上的B点静止下

解题思路:物体最终处于静止状态,故受力平衡,由题知物体沿斜面的下滑力大于物体受到的沿斜面向上的滑动摩擦力解题过程:A、由题意可知,物块从静止沿斜面向上运动,说明重力的下滑分力大于最大静摩擦力,因此物体

在探究斜面的机械效率与倾斜程度关系的实验中,将重5N的物体沿斜面从底端匀速拉到顶端,移动1m(如图所示),改变斜面倾斜程

(1)粗糙(2)(3)小;盘山公路(1)本实验是研究斜面的倾斜程度对机械效率的影响,按照控制变量法要把斜面的粗糙程度这一关键因素控制不变;(2)实验过程中,用弹簧测力计的拉力F要同时克服摩擦力f和物体

如图所示,质量M=1KG的物体放在倾角θ=37°的足够长的固定斜面底端,物体与斜面间动摩擦因数为0.25.现用轻绳将物体

G1=mgsin37=6Nf=umgcos37=2NF合=G1-f-F拉=3N方向沿斜面向下.a=F合/m=3m/s^2方向沿斜面向下.

如图所示倾角为37的斜面固定在水平地面上,一质量为m=1kg的小物体放置在斜面的底端A处,物体与斜面的动摩擦因数为μ=0

1...v1/t1=a1F=ma1s1=1/2at^22……动能定理1/2mv1^2=fs2f=mgsin37+mgcos37u3……S=s1+s2a2=mgsin37–mgcos37uS=1/2a2

如图所示,在斜面底端的正上方h处以10m/s水平抛出物体飞行一段时间后,垂直的撞上倾角为45度的斜面上.

若g取10的话垂直的撞上倾角为45度的斜面上.则合速度方向与斜面垂直,既向下的速度也为10m/st=v/g=10/10=1s

如图所示,质量为m的物体A放在倾角θ=30°的斜面上,物体与斜面间的摩擦因数为μ,用力F通过滑轮将物体从斜面底端拉到顶点

物体必须匀速运动,所以受力平衡由F(1+cosa)=mgsinθ+μ(Fsina-mgcosθ)F=mg(sinθ-μcosθ)/(1+cosa-μsina)只要求(1+cosa-μsina)的最大值

如图所示,一个质量为m的物体(可视为质点),以某一速度由斜面底端冲上倾角为30°的固定斜面,其加速度大小为g,在斜面上上

根据牛顿第二定律知,物体所受的合力为mg,方向沿斜面向下,根据动能定理得,△Ek=-mg•2h=-2mgh,知动能减小2mgh.物体重力势能增加mgh,所以机械能减小mgh.故A、B正确,C、D错误.

如图所示,将一轻弹簧固定在倾角为30度的斜面底端,现用一质量为m的物体将弹簧压缩锁定在A点,

由物体离开弹簧后沿斜面向上运动的加速度等于g可知,(f+mgsin30°)/m=g,即物体受到的摩擦阻力f=mg/2,物体从A点运动到B点克服摩擦阻力做功损失机械能为mgh/2sin30°=mgh,同

如图所示,在倾角θ=37足够长的固定斜面上,有一质量为m=1kg的物体,物体与斜面的动摩擦因素为0.5,物体从斜面底端出

第一步:受力分析,物体沿斜面向上,受到三个力,重力,斜面对物体的支持力,还有摩擦力,方向向下第二步:建立坐标系,沿斜面和垂直斜面建立坐标系,把重力(不在坐标轴的力)分解成垂直斜面和沿斜面方向,垂直斜面

在倾角=37°的斜面底端放一物体,其质量m=5kg,物体与斜面间摩擦因数u=0.5,一平行斜面的力将此物体沿斜面匀速上推

W=μmgcos37°·s=0.5*5*10*0.8*3=60J再问:为什么是cos37°啊再答:f=μN要注意N是指正压力,你分解一下重力对斜面的力(正交分解)分力一个平行斜面一个垂直斜面垂直斜面的

如图所示,已知斜面长5m,高2m,拉力为50N.利用这个装置将重为100N 的物体在5s内匀速从斜面的底端拉到

(1)有用功等于直接把物体匀速举高2m所做的功;W有用=Gh=100N×2m=200J;(2)拉力所做的总功W总=Fs=50N×2×5m=500J;(3)拉力做功的功率为P=W总t=500J5s=10

如图所示,物体以4m/s的初速度自斜面底端A点滑上光滑斜面,途径斜面中点C,到达最高点B.已知在A、C点速度

如图,一物体以4m/s的速度滑上光滑斜面,途经A.B两点,已知它在A点时的速度是B点时的2倍,由B点再0.5s物体就滑倒斜面顶端C,速度恰好减至为零,A.B间相距0.75m,求斜面的长度及物体由底端滑

如图所示,物体以4m/s的初速度自斜面底端A点滑上光滑斜面,途经斜面中点C,到达最高点B.已知在A、C点速度v A :v

(1)根据匀变速直线运动的速度位移公式知,vC2-vA2=2aL2vB2-vC2=2aL2则vC2-vA2=vB2-vC2因为vA=4m/s,vA:vC=4:3,则vC=3m/s解得vB=2m/s.(

如图所示,物体在离斜面底端5m处由静止开始下滑,然后滑上由小圆弧(长度忽略)与斜面连接的水平面上,若斜面及水平面的动摩擦

物体在斜面上受重力mg、支持力FN1、滑动摩擦力Ff1的作用,沿斜面加速下滑,在水平面上减速直到静止.对物体在斜面上的受力分析如图甲所示,可知物体下滑阶段:FN1=mgcos 37°&nbs

如下图所示,物体在离斜面底端5m处由静止开始下滑,然后滑上由小圆弧与斜面连接的水平面上,若物体与斜面水平面的动摩擦因数均

解法一:物体在鞋面上受到重力mg、支持力mgR-Wf=1/2mv²B-1/2mv²A(v后面的二是平方)、摩擦力Wf=13mJ的作用,沿斜面加速下滑(因为μ=0.4<tanθ=0.

如图所示,一质量为m的物体在沿斜面向上的恒力F作用下,由静止从底端向上做匀加速直线运动.若斜面足够长,表面光滑,倾角为θ

A、根据能量守恒,除了重力之外的力对物体做功时,物体的机械能就要增加,增加的机械能等于外力作功的大小,由于拉力对物体做的功为80J,所以物体的机械能要增加80J,撤去拉力之后,物体的机械能守恒,所以当

如图所示,将质量为100kg的木箱,用一平行于斜面向上的力从底端匀速拉到斜面顶端.斜面长5m、高1.6m,在此过程斜面的

①∵m=100kg,g=10N/kg,∴木箱的重力为:G=mg=100kg×10N/kg=1000N,而h=1.6m,∴克服重力所做的有用功为:W有用=Gh=1000N×1.6m=1600J,∵η=8

如图所示,一物体以初速度v0从表面光滑的斜面底端滑上斜面.斜面倾角为a,则物体在斜面向上滑动过程中加速

a=mgsinα/m=gsinα(方向沿斜面向下)vt^2-v0^2=2as∴s=(vt^2-v0^2)/(2a)=(0-v0^2)/(-2gsinα)=v0^2/(2gsinα)

机械能守恒 如图所示,在高为h,长为L的光滑斜面顶端装有滑轮,斜面底端有一物体m,通过滑轮用细线跟重锤M相连,由于重锤的

当M下降落地H时,m向上加速了H长,速度达到最大V,设此地m离地s以地为零势点根据机械能守恒MgH=mgs+(M+m)V^2/2s=Hh/L当H落地的时候,绳的拉力为零,m向上减速到顶端根据机械能守恒