如图所示,正方形ABCD中=4厘米,EC=10厘米
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:28:20
第一问,用相似推出MN=1,和EF平行且相等,有平行四边形EFNM,FN//EM,EM//面FBC.第二问.还有第三问,你确定这是高一的题么.好像要用到空间向量的说再问:这是高一的题呀。。空间向量在必
作AH⊥FB,(H在FB上),连DH,ABCD为正方形,EA⊥面ABCD,AD⊥BAEF面,FB⊥AD,DH⊥AD,∠AHD是二面角A-FB-D,作EG∥FB,(G在AB上),△ABH∽△EGA,AH
延长EA至H,使AH=FC;连BH;则,AH=FC,AB=BC,∠BCF=∠BAH=90°;三角形BCF与三角形BAH全等;所以BF=BH,∠ABH=∠FBC;∠EAH=∠EAB+∠ABH=∠EAB+
分析:根据图形以及正方形性质得出正方形各边长度,进而得出矩形ABCD中最大正方形与最小正方形的面积之差即可.∵中间一个小正方形面积为4,其他正方形的边长分别为a、b、c、d.∴中间一个小正方形边长为:
如图所示,矩形ABCD被分成6个大小不一样的正方形,已知中间一个小正方形的面积为4,求矩形ABCD中最大正方形与最小正方形的面积之差.先顺时针看:b=a+2c=b+2d=c+2∴d=a+6再看两个边长
设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.
(Ⅰ)连接D1O,如图,∵O、M分别是BD、B1D1的中点,BD1D1B是矩形,∴四边形D1OBM是平行四边形,∴D1O∥BM.(2分)∵D1O⊂平面D1AC,BM⊄平面D1AC,∴BM∥平面D1AC
这个好几种方法呢,选择最简单的吧.过点B作BE⊥AB1交AB1于点E,连接CE.∵BC⊥平面ABB1,∴BC⊥AB1,∴AB1⊥平面BEC,∴AB1⊥CE∴∠CEB即为所求角RT△ABB1内,AB=2
将4个点连起来就行了,每个点到顶点的距离为根号2.
(1)DP=DA,证明:连接AP,BP,∵点P是△ABC内心,∴∠BAP=∠CAP,∵四边形ABCD是正方形,∴∠ABP=∠CBP=45°,∴P在对角线BD上,∴∠DPA=∠DBA+∠BAP=45°+
1、过点A作PD的高,交PD于点M,那么AM距离就是点A到平面PCD的距离,运用直角三角形直角边与高之间的运算公式得h=(PA×AD)/√(PA^2+AD^2)=(4×2)/√20=4√5/52、直线
在正方形ABCD中,AC=根号2*AD所以:AD=3根号2所以:S扇形=(AD平方乘π)/4=4.5乘πS阴=18减4.5乘π
S⊿DEF=16﹙1-1/4-3/8-1/16﹚=5﹙面积单位﹚
如图,边长AB=4BE=EC=2BF=1/4AB=1Sdce=1/2X4X2=4Sbef=1/2x2x1=1Sdaf=1/2x4x3=6Sdef=Sabcd-Sdce-Sbef-Sdaf=5
证明:连接B1D1和BD因为B1D1垂直于A1C1且DD1还垂直于A1C1,所以面D1DB1垂直于A1C1又因为B1D在面B1DD1内故A1C1垂直于B1D同理连接B1C可得面B1CD垂直于BC1又因
考点:相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.专题:规律型.分析:先根据两对对应角相等的三角形相似,证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1
(1)证明:在正方形ABCD中,∠D=∠ABC=90°,∴∠ABF=90°,∴∠D=∠ABF=90°,又DE=BF,AD=AB,∴△ADE≌△ABF.(2)将△ADE顺时针旋转90后与△ABF重合,旋
证明:取AD的中点H,连接FH,GH,则EF∥DC,EF=(1/2)DC=1,GH∥DC所以:EF∥GH所以:EFHG是梯形,即EFHG四点确定一个平面,又因为:AP∥FH,且FH在平面EFHG内所以
∵CD⊥AD(正方形哈)又∵CD⊥PD(PD⊥面ABCD)∴就有CD⊥于面PAD又EF平行CD(中位线)∴EF⊥面PAD因为PA属于面PAD∴PA⊥EF做AP的重点M,并连接BM,FM,易得BG平行相
∵∠AFD=65°,AB‖CD∴∠BAE=65°∵ABCD是正方形∴BA=BC,∠ABE=∠CBE=45°∵BE=BE∴△ABE≌△CBE∴∠BEC=∠BEA∵∠BEA=180°-65°-45°=70