如图所示,有一个二级台阶,每一级台阶的长.宽. 高分别为60,30,10
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:37:49
如果用n表示台阶的级数,an表示某人走到第n级台阶时,所有可能不同的走法,容易得到:①当n=1时,显然只要1种跨法,即a1=1.②当n=2时,可以一步一级跨,也可以一步跨二级上楼,因此,共有2种不同的
假设共1级台阶,则只有1种走法2级,有2种走法3级,有4种走法4级,1+2+4=7种走法5级,2+4+7=13种走法6级,4+7+13=24种走法7级,7+13+24=44种走法
从简单情况入手:(1)若有1级台阶,则只有惟一的迈法:a1=1;(2)若有2级台阶,则有两种迈法:一步一级或一步二级,则a2=2;(3)若有3级台阶,则有4种迈法:①一步一级地走,②第一步迈一级而第二
先想极端情况,即5个2级.2与3互质,所以每少3个2级,则增加2个3级.只有这两种情况.所以一共有1+C(4,2)=7种走访
三级台阶的走法有:每次走一级;第一次走一级,第二次走二级;第一次走二级,第二次走一级;一次走三级共四种方法.同样以后的每三级台阶都有四种方法,所以共有4*4*4*4=256
52÷13=4层小红家7-4=3层如果本题有什么不明白可以追问,
f(n)=f(n-1)+f(n-2)+f(n-3)f(1)=1f(2)=2f(3)=4f(4)=7f(5)=13f(6)=24f(7)=44f(8)=81f(9)=149f(10)=274f(11)=
二级0次,就是三级4次,1种二级1次,不可能二级2次,不可能二级3次,三级2次,C(3,5)=10种二级4次,不可能二级5次,不可能二级6次,1种所以共1+10+1=12种
将台阶展成平面,形成一个大长方形,长方形的长=60㎝,宽=45+27+45+27+?连接AB,即大长方形对角线,再利用勾股定理求出AB长度,时间=AB/0.8.由于没有图,你那A、B点在那?∴宽=?但
将AB展开是个长方形,45+45+27+27=144再答:用勾股计算AB再答:就OK了再答:ab=156156÷0.8=195秒
我记得是我忘记了貌似有72种可能更多点其实我也忘记了再问:114zhong
李慧家从楼上到楼下有十二级台阶,如果每一步只登上一级或两级台阶,那么李慧上下楼有多少种走法?89种走法具体解答思路如下:当有n个台阶的时候,设有a(n)种走法,那么达到n台阶只有两个方法,第一在n-1
20×(5-1)=20×4=80个再问:哦谢谢,是一年级的题,不能这样列算式吧再答:5-1=420×4=80再答:可以吗再答:学了乘法没再问:没学乘法再答:要是没20+20=4020+20=4040+
解题思路:登上1个台阶1种方法,登上2个台阶2种方法,登上3个台阶3种方法,台阶数量多时,这样思考:登上4个台阶,如果先跨1个台阶还剩3个台阶3种方法再上去;如果先跨2个台阶还剩2个台阶2种方法再上去
首先通过二元一次方程组,解出走一级和二级个多少步设一级X步,二级Y步X+Y=12X+2Y=18X=6,Y=6即,在12步里选6次走一级即可C12取6=924种
C12,6我们可以这样思考,总共有12个台阶被踩,6个台阶未被踩,可以把12个台阶依次排开,为6个台阶选位置.模型如下×O×O×O×O×O×O×O×O×O×O×O×O其中O表示被踩的台阶,×表示未被踩
20个呗~一楼到二楼是10,二楼到三楼也是10所以20个呗
一种方法:从A点由静止沿斜面下滑做匀加速运动,接着至B点做匀速直线运动,飞离B点做平抛运动第二种方法:机械能守恒,动能和势能守恒
输入10可以输出吗,我的堆栈报错,直接溢出了.还有第三个判断条件,那个三步的时候,你能有四种走法,答案应该是230吧,改过来吧.不知道楼上的怎么会认为没错,不过得谢谢楼主哇,以前都是用非递归写的,这次